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Molekiilwolken sind besonders dichte Zusammenballungen des interstellaren Medi-
ums: In ihnen kommen auf einen cm® zwischen 100 und 100 Millionen Molekiile.
Zum Vergleich: Im interstellaren Medium gibt es Gebiete, in denen sich auf einem
ganzen m>® nur 10 Atome befinden (zur Molekiilbildung kommt es dort fast iiber-
haupt nicht mehr).

Molekiilwolken sind in der Astronomie ein wichtiges Thema, weil nur durch den
Kollaps von Molekiilwolken Sterne entstehen kdnnen. Dennoch gibt es gerade beim
Kollaps noch viele Unklarheiten. Wir werden uns im Laufe des Skriptums (neben
einigen tatsichlichen Eigenschaften von Molekiilwolken) einige Formeln herleiten,
bei denen noch immer nicht geklart ist, warum sie nicht mit der Realitit iiberein-
stimmen.

Wir werden in unseren Berechnungen wieder einige Naherungen einflieBen lassen, die
keinen groBen Unterschied machen. Beispielsweise werden wir davon ausgehen, dass
die Molekiilwolke ndherungsweise kugelférmig ist, weil sie von allen Seiten gleich
viel Material anzieht.

1 Lebenszyklus

In der Friihzeit des Universums (als die kosmische Hintergrundstrahlung erzeugt
wurde) war das interstellare Medium beinahe gleichmiRig verteilt. Geringe Dichte-
unterschiede gab es aber schon damals.
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Von den dichteren Gebieten ging etwas mehr Gravitation, als von den diinneren Ge-
bieten aus. Dadurch wurden die dichteren Gebiete immer dichter und die diinneren
Gebiete immer diinner. In den dichteren Gebieten verbinden sich die Teilchen mit
einer hoheren Wahrscheinlichkeit zu Molekiilen - Es bilden sich langsam Molekiil-
wolken.

Nach ungefihr 6 Millionen Jahren ist eine Molekiilwolke dicht genug, damit es zur
Sternentstehung kommen kann (immer vorausgesetzt, die Molekiilwolke ist masse-
reicher als die Jeansmasse - siehe spater). Durch die Strahlung der Sterne wird die
Molekiilwolke erwdrmt und dehnt sich aus.

Nach durchschnittlich 13 Millionen Jahren ist die Molekiilwolke so diinn, dass keine
Sternentstehung mehr méglich ist. Weitere 7 Millionen Jahre spater hat sich die
Molekiilwolke vollstandig im ISM verteilt.

Da es nicht iiberall gleich warm war, ist die Verteilung der Molekiile im ISM nicht
gleichmaBig und die Gravitation wirkt unterschiedlich - Eine neue Molekiilwolke
kann entstehen und der Zyklus beginnt von vorne.

2 Energieverhailtnis einer stabilen Molekiilwolke

Als erstes wollen wir berechnen, wie das Verhaltnis zwischen der kinetischen und
der potentiellen Energie sein muss, damit die Molekiilwolke stabil bleibt. Damit die
Wolke stabil ist, muss zu jeder Kraft eine gleich groRe Gegenkraft wirken, wir kdnnen
also die Krafte, die nach innen wirken und die Krafte, die nach aullen wirken an
jeder Stelle miteinander gleichsetzen (mit einem Minus, weil sie in entgegengesetzte
Richtungen wirken).

Finnen — —IauRen (21)

Betrachten wir nun ein beliebiges infinitesimal kleines Flachenelement A innerhalb
der Molekiilwolke. Den Abstand des Flachenelements vom Schwerpunkt nennen wir
r, die Masse, die weiter innen, als das Flachenelement liegt m.

Nach innen wirkt ausschlieRlich die Gravitationskraft, allerdings nur von jenen Teil-
chen, die sich in der Gravitationswolke weiter innen befinden (Die Gravitation der
weiter aullen liegenden Teilchen zieht die Molekiilwolke nach auRen, allerdings ist
diese Kraft genauso groR wie der Druck dieser Teilchen nach innen, so dass die-
se Kréfte wegfallen). Laut dem Newton'schen Gravitationsgesetz kdnnen wir also
einsetzen:

G
Finnen = A7m (22)
r
Nach auBen wirkt der thermische Druck. Dabei muss man allerdings beachten, dass
in den benachbarten Schichten ebenfalls ein Druck herrscht, der sich damit dann
ausgleicht. Insgesamt wirkt nach auBen also nur die radiale Druckdnderung. Wir
kénnen einsetzen:
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d
FauEen = dil: (23)
Wenn wir das gleichsetzen, erhalten wir:
Gm dp
A— = —— 2.4
r dr (2:4)

Um die Krafte nicht nur fiir ein infinidesimal kleines Flachenelement sondern fiir
die gesamte Molekiilwolke auszurechnen, miissen wir zunichst einmal beide Sei-
ten mit 47r3 multiplizieren, um auf die Oberfliche der Kugel an der Stelle dieses
Flichenelements zu kommen.

ArAGmr® = —47rr3% (2.5)

Damit wir auf die Kréfte fiir die gesamte Kugel kommen, miissen wir alle infinite-
simal diinnen Oberflichen summieren, wir bilden also das Integral zwischen 0 und
R

R R dp
/ 4t AGmridr = —/ 4rrd Zdr (2.6)
0 0 dr

Auf der linken Seite benutzen wir die Definition fiir das Kugelschalenmassenelement
dm = 47r?A um die Gleichung zu vereinfachen

R
/ Gmdm = Epot (2.7)
0

Auf der rechten Seite verwenden wir die partielle Integration, wobei wir % integrie-
ren und 47r3 ableiten wollen. Wir erhalten:

R

R
pbrr? 73p/ 4rridr (2.8)
0

0

An der Stelle 0 fallt der erste Term weg, denn der Radius bei 0 ist 0. An der Stelle
R féllt er ebenso weg, denn hier ist der Druck 0 (SchlieRlich driickt hier nichts mehr
von auBen auf die Teile drauf). Der erste Term fillt also vollstindig weg.

Um den zweiten Term zu vereinfachen, definieren wir ein Druckmittel. Dieses soll
dem durchschnittlichen Druck innerhalb der Molekiilwolke entsprechen. Es muss
also gelten:

_ PGes.
= 2.9
P="y (2.9)
Im Z3hler kdnnen wir statt dem Gesamtdruck die Druckformel, bei der die Druck-
funktion Gber alle Schalen der Kugel summiert wird, einsetzen und 2.9. mit V mul-
tiplizieren. Damit erhalten wir:
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R
Vﬁ:/ 4rridr (2.10)
0

Auf der rechten Seite steht genau das Integral aus 2.8. In dieser Gleichung kénnen
wir also statt der rechten Seite die linke Seite von 2.10. einsetzen. Statt dem Druck
kénnen wir den mittleren Druck einsetzen, weil sie im Durchschnitt gleich sind.

Epot = —3VP° (2.11)

Als nichstes wollen wir uns die thermische Energie ausrechnen. Dazu gehen wir
davon aus, dass die Molekiilwolke aus monoatomaren Gasen besteht. Monoatomare
Gase sind Gase, die aus lauter gleichen Atomen bestehen. Beispielsweise ist Ozon
(O3) ein monoatomares Gas, weil es nur aus Sauerstoffatomen besteht. Kohlen-
dioxid (COs) ist kein monoatomares Gas, weil da zwei Atomsorten drinnen sind:
Sauerstoffatome und Kohlenstoffatome.

Fiir unsere Molekiilwolke ist das mit den monoatomaren Gasen eine gute Naherung,
weil sie fast ausschlieBlich aus Wasserstoff besteht (SchlieRlich hat die Sternent-
wicklung noch nicht begonnen, sodass noch keine Fusionierung stattgefunden hat).
In diesem Fall, kann man die kinetische Energie eines Teilchens mit der Formel

Exin = gks T (2.12)

ausrechnen, wobei kg die Bolzmannkonstante und T die Temperatur darstellt. Um
die gesamte kinetische Energie auszurechnen, muss man die kinetischen Energien
aller Teilchen summieren.

Um uns die Anzahl der Teilchen in der Molekiilwolke auszurechnen, mussen wir
die Teilchendichte (n) mit dem Volumen der Molekiilwolke (V) multiplizieren. Die

gesamte kinetische Energie ist nun die Anzahl der Teilchen mal der kinetischen
Energie pro Teilchen.

Ek,',, = ng TnV (213)
In diese Formel kdnnen wir die ideale Gasgleichung

p=kgTn (2.14)

einsetzen und erhalten so

3
Ek,‘n = EpV (215)

Da wir den Druck iiber das gesamte Volumen betrachten, kdnnen wir, statt den
Druck in jedem Element extra zu betrachten, iiberall den Mittelwert nehmen
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3
Eun = 2PV (2.16)

Hier kdnnen wir wieder 2.11. einsetzen:

Epot
2
An dieser Formel erkennen wir, dass die nach aulen wirkende kinetische Energie

in einer stabilen Molekiilwolke immer doppelt so groR wie die nach innen wirkende
potentielle Energie sein muss. Dieses Gesetz nennt man ,Virialtheorem".

Eyin = —

(2.17)

3 Jeansmasse

Die Jeansmasse ist die maximale Masse, die eine Molekulwolke besitzen kann. Wenn
die Wolke schwerer als die Jeansmasse ist, kann die thermische Energie die Gravi-
tation nicht mehr ausgleichen und es kommt zu einem Kollaps.

Im Fall eines Kollaps verliert die Molekiilwolke das thermische Gleichgewicht und
die Gravitation nach innen wird starker als der Druck nach auRen. Im Virialtheorem
wird die potentielle Energie mehr als doppelt so groR wie die kinetische Energie.
Setzen wir wieder die Formeln fiir die kinetische und die potentielle Energie ein,
erhalten wir

3GM? _ 3

Fiir das Volumen kénnen wir die Volumsformel der Kugel einsetzen. Damit erhalten
wir

3GM? _ AnR?
—5? > 7TTI(B Tn (32)

Da wir wissen, dass 5R? und 3G groRer als Null sind, kénnen wir die Gleichung nach
M? umformen, ohne das Ungleichheitszeichen zu drehen. Dabei erhalten wir:

10R*nkg Tn
3G

Wir wissen, dass die Masse das Volumen der Molekiilwolke mal der Dichte ist.

M? > (3.3)

4TR3p

M=Vp= 3 (3.4)
Durch Umformen dieser Formel nach R erhalten wir
3M
R=¢-— (3.5)
4mp
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Das konnen wir in 3.3. fiir den Radius einsetzen.

10(¢/ 24 Yok Tn
[ o (3.6)

Um die Formel zu vereinfachen, potenzieren wir 3.6. hoch 3

100052224 (kg Tn)*

27G3

M® (3.7)
Um den Doppelbruch wegzurechnen, multiplizieren wir oberhalb und unterhalb des

Bruchstrichs mit 2567%p*. AuRerdem konnen wir die Gleichung auf beiden Seiten
durch M* dividieren und den Bruch durch 21673 kiirzen.

375(kg Tn)?
M2> 2 3.8
7 T TR (3:8)
Durch bilden der Wurzel erhalten wir die Jeansmasse
375(kg Tn)3
MJeans = - 32637Tp47 (39)

In diese Formel kdnnen wir die Konstanten und die Teilchendichte von Wasserstoff
einsetzen (Da noch keine Fusionsprozesse stattgefunden haben, besteht die Mole-
kiilwolke hauptsichlich aus Wasserstoff). Dabei kommen wir auf einen Wert von

T3 T3
M jeans = || —8, 4x10%%kg = |/ —4,2x10"*Me (3.10)
P P

Dieses Ergebnis stimmt jedoch nicht mit der Realitat iiberein: Es gibt Molekiilwol-
ken (auch kugelférmige), die viel schwerer als die Jeansmasse sind, aber trotzdem
nicht kollabieren. Teilweise kollabieren auch nur Teile einer Molekiilwolke, die selber
groler als die Jeansmasse sind und es bleibt ein Rest iiber, der vorerst eine Mo-
lekiilwolke bleibt. Wenn das Jeanskriterium stimmen wiirde, waren schon nach ein
paar Millionen Jahren alle Molekiilwolken so schwer gewesen, dass sie alle kollabiert
waren. Dann gidbe es auch keine weiteren Molekiilwolken mehr, um die Sternentste-
hung fortzusetzen.

Derzeit erklart man sich diesen Fehler damit, dass Magnetfelder und Turbulenzen im
Gas zusitzliche Energie erzeugen. Bei anderen Molekiilwolken stellt die Jeansmasse
eine gute N3herung dar. Hier vermutet man, dass die Magnetfelder ausgediinnt und
die Turbulenzen im Gas gedampft sind, so dass dadurch kaum zusitzliche Energie
entsteht.
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4 Radius einzelner Teilchen bei einem Kollaps

Als nichstes wollen wir eine Gleichung aufstellen, mit der man sich den Radius r
von jedem Teilchen zu jedem beliebigen Zeitpunkt t ausrechnen kann, falls man den
Anfangsradius des Teilchens und die Dichte der Molekiilwolke gegeben hat. Dabei
werden wir zun3chst die Reibung und die StoRe der Teilchen untereinander vernach-
lassigen.

Die Teilchen werden von der Gravitationskraft der Molekiilwolke nach innen gezogen,
also kdnnen wir das Newton'sche Gravitationsgesetz verwenden:

mM

M ist in diesem Fall nur die Masse des Teils der Molekiilwolke, der weiter innen als
das Teilchen in der Molekiilwolke liegt, denn alle anderen Teile ziehen das Teilchen
ja nicht nach innen. Wir kdnnen die Formel fiir die Kraft: F = ma in die Formel
einsetzen und erhalten:

mM
Diese Formel lasst sich durch m kiirzen. Fiir M kdnnen wir die Volumsformel der
Kugel mal der Dichte einsetzen:

473

— G 4.
)= 6t (+3)
Diese Formel kann man durch r? kiirzen
4
a= Gp%r (4.4)

Das ist die Gleichung des harmonischen Oszillators. SchlieBlich pendelt das Teilchen
ohne Einwirkung von Reibung (die wir in unserer Rechnung ja vernachlissigt ha-
ben), immer zwischen den zwei gegeniiberliegenden Seiten der Oberfliche der Kugel
mit Radius r hin und her: Zuerst fliegt das Teilchen wegen der Gravitation in den
Schwerpunkt. Dort bleibt es jedoch wegen der Tragheit nicht abrupt stehen, sondern
wiirde mit der gleichen Geschwindigkeit weiterfliegen, wenn nicht die Schwerkraft
in die andere Richtung ziehen, und das Teilchen mit der gleichen Beschleunigung
verlangsamen wiirde. Das geht so lange, bis das Teilchen beim selben Radius die
Geschwindigkeit Null erreicht und der Vorgang von vorne anfangt.

Da die Beschleunigung die zweite Ableitung des Radius ist, kann man diese Glei-
chung auch als lineare homogene Differentialgleichung zweiter Ordnung auffassen:

4
P Gp?ﬂr =0 (4.5)

Das charakteristische Polynom ist
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4
A2 — Gp?’[r =0 (4.6)

Durch Ausrechnen von Lambda erhilt man

A= i\/”TG” (4.7)

Die allgemeine Lésung der Differentialgleichung lautet also:

r(t) = AetV 5" 4 BetV " (4.8)
Fiir die spezielle Ldsung ben&tigen wir noch Randwertbedingungen. Den Radius
zum Zeitpunkt Null wollen wir Anfangsradius R nennen und wir wissen, dass die

Geschwindigkeit zum Zeitpunkt Null Null sein muss. Wir erhalten also die Rand-
wertbedingungen

r(0) = R (4.9)

H0) =0 (4.10)

Durch Einsetzen der ersten Randwertbedingung erhalten wir

A+B=R (4.11)

Um die zweite Randwertbedingung einzusetzen, bendtigen wir die Ableitung der
Funktion

. 4 7Gp 4 Tep
r(t) =1/ 7W3GpAet\/¥ — 77r3Gp Be~tV (4.12)
Das Einsetzen in die Randwertbedingung ergibt:
O:\/47erA_\/47erB (4.13)
3 3
Wir kdnnen jetzt die gesamte Gleichung durch @ dividieren und erhalten so
0=A-B (4.14)
A=B (4.15)

Da A und B laut 4.11. zusammen R ergeben miissen, wissen wir
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A=B=— 4.1
. (4.16)

Einsetzen von A und B in die allgemeine Lsung (4.8.) ergibt

r(t) = g(ef\/@ etV (4.17)

Mit Hilfe der Euler'schen Formel kdnnen wir dieses Ergebnis weiter vereinfachen:

cos(x) = % (4.18)

Fir x kdnnen wir —ti\/@ einsetzen und erhalten so

1-C /B /T
cos(—ti4/ 7T3 p):e - +2€ - (4.19)

Statt der rechten Seite von 4.19. kdnnen wir in die spezielle Losung (4.17.) die linke
Seite von 4.19. einsetzen und erhalten:

47 Gp
3

r(t) = Rcos(—ti ) (4.20)
Dass in dieser Formel die imaginére Einheit i vorkommt, &ndert nichts daran, dass
fiir r immer reelle Zahlen herauskommen. Es ist ndmlich auch der Cosinus einer
komplexen Zahl immer eine reelle Zahl.

5 Frei-Fall-Zeit

Die Frei-Fall-Zeit ist die Zeit, die ein Teilchen bendtigt, um in den Mittelpunkt
der Molekiilwolke zu fallen. Um das auszurechnen, miissen wir in die Bewegungs-
gleichung nur fiir den Radius Null einsetzen und die Formel nach t umstellen. Das
Einsetzen von r = 0 in die Formel liefert:

0= Rcos(fti\/@) (5.1)

In dieser Formel kdnnen wir auf beiden Seiten durch R dividieren, sodass R wegfallt.
Das bedeutet, dass die Zeit, wie lange das Teilchen bendtigt, um in die Mitte der
Molekiilwolke zu gelangen, nicht vom Anfangsradius abhangt. Je weiter drauRen
sich das Teilchen befindet, desto schneller fallt es, sodass alle Teilchen gleichzeitig
im Mittelpunkt ankommen. Auf den ersten Blick erscheint das unsinnig, weil die
Gravitation auBen schwicher als innen ist, aber die Fallbewegung ist eine beschleu-
nigte Bewegung, was bedeutet, dass die Geschwindigkeit mit zunehmenden Weg
grolRer wird, sodass sich das wieder ausgleicht.
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Jetzt wird auch klar, warum die Molekiilwolke nur einmal in sich zusammenfallt und
nicht (wie es die Formel des harmonischen Oszillators (4.4) nahelegen wiirde) hin
und herschwingt: Alle Teilchen kommen gleichzeitig in der Mitte an und so wird spa-
testens hier jedes Teilchen zuriickgestoBen. Die Gleichung wird nahe des Zentrums
also falsch, weil wir dort nicht mehr die TeilchenstdBe vernachlassigen kdnnen. Bis
relativ (im Vergleich zur GroRe der Molekiilwolke) kurz vorher, kdnnen wir diese
noch vernachlassigen, sodass unsere Gleichung trotzdem eine gute Naherung ist.

Nach der Division durch R schaut die Gleichung so aus:

4 Gp
3 )
Als nichstes nehmen wir den Arcuscosinus. Dabei erhalten wir auf der linken Seite
unendlich viele unterschiedliche Lésungsmdglichkeiten, weil das Teilchen laut N&-
herung unendlich oft am Mittelpunkt der Molekiilwolke vorbeipendelt. Wir setzen
die niedrigste positive Losung ein, weil wir wissen wollen, nach welcher Zeit das
Teilchen das erste mal im Schwerpunkt ankommt.

T . |4nGp

Um die Wurzel und die imaginare Einheit zu eliminieren, quadrieren wir die Gleichung
auf beiden Seiten

0 = cos(—ti (5.2)

4 3

Durch Umformen der Gleichung nach t erhalten wir die Formel fiir die Frei-Fall-Zeit

[ 37
tff = @ (55)

Durch Einsetzen der Konstanten erhalten wir

2 A7 G
T izt (5.4)

280
tg = % Jahre (56)

6 Volumen der Molekiilwolke bei einem Kollaps
Analog zu der Bewegungsgleichung, die jedem Zeitpunkt einen Radius zuordnet,
wollen wir eine Gleichung aufstellen, die jedem Zeitpunkt ein Volumen der Mole-

kiilwolke zuordnet. Der Radius der Molekiilwolke ist immer durch den Radius des
duBersten Teilchens bestimmt. Fiir das duBerste Teilchen gilt unsere Bewegungsglei-

chung
r(t) = Rcos(fti\/47T3Gp) (6.1)

10
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genauso wie fiir alle anderen Teilchen auch, nur dass R dann gleichzeitig dem An-
fangsradius der Molekiilwolke entspricht. Man kann jetzt den Radius des duRersten
Teilchens zu jedem Zeitpunkt in die Volumsformel der Kugel einsetzen und erhalt
damit:

w[Reos(—tiy/ 2=eL)3
(o) IRees ;\/ D) 6

In dieser Formel konvergiert das Volumen gegen Null, wenn t gegen die Frei-Fall-
Zeit konvergiert. Das stimmt natiirlich so nicht, weil wir den thermischen Druck, der
nach auBen wirkt, vernachldssigt haben. Dennoch ist es eine gute Niherung, weil
die GroRe eines Sterns im Vergleich zur GroRe einer Molekiilwolke vernachlassigbar
gering ist. (Das Volumen der kleinsten Molekiilwolke ist eine Billiarde mal groRer als
das Volumen des groBten Sterns. Wenn der Stern in Wien ware und einen Radius
von einem Meter hitte, wiirde die Molekiilwolke bis nach Bratislava reichen).

7 Drehimpuls

So wie fast alle Objekte im All, drehen sich auch die Molekiilwolken. Auch sie haben
also einen Drehimpuls. Die allgemeine Formel fiir den Drehimpuls lautet:

—

J = pxr = mvxr (7.1)

Da die Drehimpulserhaltung gilt, muss J auch beim Kollaps der Molekiilwolke im-
mer gleich groR bleiben. Da der Radius dabei kleiner wird und die Masse erhalten
bleibt, bedeutet das, dass die Rotationsgeschwindigkeit bei einem Kollaps immer
groer wird.

Um uns auszurechnen, wie stark sich die Geschwindigkeit dndert, setzen wir, wie
schon fiir die Volumsberechnung, fiir den Radius die Bewegungsgleichung des du-

Rersten Teilchens ein.
- 4
J = mvxReos(—tiy/ ”36"’ ) (7.2)

Umstellen dieser Gleichung nach v ergibt

v= J (7.3)

chos(—ti\/@)

Man merkt, dass die Geschwindigkeit gegen Unendlich konvergiert, wenn t gegen die
Frei-Fall-Zeit konvergiert. Sie konvergiert nicht ganz gegen Unendlich, weil das Vo-
lumen nicht ganz gegen Null konvergiert, aber sie wére auf jeden Fall deutlich groRer
als die Lichtgeschwindigkeit. Des weiteren wiren die Fliehkrifte bei dieser Geschwin-
digkeit so groB, dass der Stern unméglich zusammenhalten kénnte. (Wenn man die
Zahlen einer durchschnittlichen Molekiilwolke einsetzt ist die Winkelgeschwindigkeit

11
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10-Millionen mal schneller als die von einem durchschnittlichen Stern).

Es gibt verschiedene Erklarungsansitze, wo der ganze Drehimpuls hin verschwin-
det. Da gar so viel Drehimpuls verloren geht, treffen wahrscheinlich gleich mehrere
Erklarungsansitze zu.

e Ein Erklarungsansatz, der sicher zutrifft, ist, dass der Stern Drehimpuls in
die protoplanetare Scheibe abgibt. Spater iibernehmen die Planeten diesen
Drehimpuls

e Die Molekiilwolke ist durch Magnetfelder mit ihrer Umgebung verbunden. Bei
der Kontraktion bremsen die Magnetfelder die Molekiilwolke ab.

e Winde und Jets bremsen die nach der Kontraktion abgeflachte ,protostellare
Scheibe"

e Die Wolke bricht auseinander, was zu Mehrfachsternsystemen fiihrt. Viel Ener-
gie verschwindet in den Orbit der Sterne

8 Kraftednderung wihrend des Kollaps

Die Krafte, die auf die Molekiilwolke wirken, andern sich im Laufe des Kollaps sehr
stark: Die Gravitation wird starker, weil die Teilchen immer n3her zum Schwerpunkt
kommen, gleichzeitig wird auch der thermische Druck starker, weil die Teilchen im-
mer stirker zusammengedriickt werden. Diese Anderung ist deshalb wesentlich, weil
der Kollaps so lange fortgesetzt wird, bis die Krafte wieder im Gleichgewicht sind.

Dabei werden auch Scheinkrafte wie die Tragheit interessant, weil sie dafiir sorgen,
dass der Stern nicht sofort im Kraftegleichgewicht stehen bleibt, sondern vorher hin-

und herpendelt, bis die Reibung diese Bewegung abgebremst hat.

Die Formel fiir die Gravitation ist laut Newton'schen Gravitationsgesetz

mM

Da die Masse der Molekiilwolke (aufgrund der Massenerhaltung) und die Gravitati-
onskonstante immer gleich bleiben, bedeutet das, dass die Zunahme der Gravitation

% betragt.

Fiir den Druck gilt

p=pTR; (82)

wobei wir fiir die Dichte die Masse durch die Volumsformel einsetzen, um wieder
auf eine r-Abhangigkeit zu kommen.

_ 3MTR,
~ 4nrs

(8.3)
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Der thermische Druck nimmt also mit dem Faktor 713 zu.

Die Voraussetzung fiir einen Kollaps war, dass die Gravitationskraft stirker als der
Druck ist. Da der Druck jedoch mit kleiner werdendem Radius schneller zunimmt
als die Gravitation, ist es nur eine Frage der Zeit, bis sie sich wieder ausgleichen
und im thermischen Gleichgewicht sind.

Wenn wir ausrechnen wollen, wie weit die Molekiilwolke in sich zusammenfallt, miis-

sen wir die Formeln der beiden Kréafte gleichsetzen. Vor einer der Formeln schreiben
wir wieder ein Minus, weil die Krafte in die entgegengesetzten Richtungen wirken.

3MTR,  GM

=27 8.4
4rr3 r2 (8:4)
Diese Gleichung kann man nach r umstellen und erhilt so
3TR;s
= — 8.5
r 4G (8.5)

Durch Einsetzen der Gravitationskonstante und der spezifischen Gaskonstante vom
Wasserstoff erhdlt man

r=1,5x108T (8.6)

Das ist ein Wert der viel groBer ist als Sterne tatsdchlich sind. Auch diese Formel
fiihrt also auf einen Widerspruch.

9 Magnetfelder

Ahnlich wie die Planeten, besitzen auch die Molekiilwolken Magnetfelder. Dafiir
verantwortlich ist die kosmische Strahlung, die dafiir sorgt, dass die Molekiilwolken
elektrisch leitfahig sind. In diesem Fall gilt der sogenannte ,Satz des erhaltenen
Flusses”: Der magnetische Fluss zwischen mehreren Gasteilchen bleibt immer gleich
grol. Dabei spielt es auch keine Rolle, ob sich der Abstand zwischen diesen Teilchen
verdndert.

Bei der Kontraktion der Molekiilwolke ndhern sich die Gasteilchen sehr stark anein-
ander an, der magnetische Fluss zwischen diesen Teilchen bleibt jedoch gleich. Das
bedeutet, dass die Magnetfeldstarke, also die magnetische Kraft pro Flacheneinheit,
sehr stark zunimmt.

Auch diese Uberlegung stimmt nicht mit der Realitit iiberein. Wiirde diese Uberle-
gung stimmen, miissten die Magnetfelder in einem Stern 100-Millionen mal starker
sein, als sie in den Sonnenflecken, also den Stellen des Sterns mit dem hochsten
Magnetfeld, tatsichlich sind.
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