
Materiekreislauf

Molekülwolken

Grundlagen aus dem ersten Semester:
06-Sternarten und Sternentwicklung (Seite 4 - 5)
Physikalische Rechenmethoden (Seite 256 - 259)

Molekülwolken sind besonders dichte Zusammenballungen des interstellaren Medi-
ums: In ihnen kommen auf einen cm3 zwischen 100 und 100 Millionen Moleküle.
Zum Vergleich: Im interstellaren Medium gibt es Gebiete, in denen sich auf einem
ganzen m3 nur 10 Atome befinden (zur Molekülbildung kommt es dort fast über-
haupt nicht mehr).

Molekülwolken sind in der Astronomie ein wichtiges Thema, weil nur durch den
Kollaps von Molekülwolken Sterne entstehen können. Dennoch gibt es gerade beim
Kollaps noch viele Unklarheiten. Wir werden uns im Laufe des Skriptums (neben
einigen tatsächlichen Eigenschaften von Molekülwolken) einige Formeln herleiten,
bei denen noch immer nicht geklärt ist, warum sie nicht mit der Realität überein-
stimmen.

Wir werden in unseren Berechnungen wieder einige Näherungen einfließen lassen, die
keinen großen Unterschied machen. Beispielsweise werden wir davon ausgehen, dass
die Molekülwolke näherungsweise kugelförmig ist, weil sie von allen Seiten gleich
viel Material anzieht.

1 Lebenszyklus
In der Frühzeit des Universums (als die kosmische Hintergrundstrahlung erzeugt
wurde) war das interstellare Medium beinahe gleichmäßig verteilt. Geringe Dichte-
unterschiede gab es aber schon damals.
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Von den dichteren Gebieten ging etwas mehr Gravitation, als von den dünneren Ge-
bieten aus. Dadurch wurden die dichteren Gebiete immer dichter und die dünneren
Gebiete immer dünner. In den dichteren Gebieten verbinden sich die Teilchen mit
einer höheren Wahrscheinlichkeit zu Molekülen - Es bilden sich langsam Molekül-
wolken.

Nach ungefähr 6 Millionen Jahren ist eine Molekülwolke dicht genug, damit es zur
Sternentstehung kommen kann (immer vorausgesetzt, die Molekülwolke ist masse-
reicher als die Jeansmasse - siehe später). Durch die Strahlung der Sterne wird die
Molekülwolke erwärmt und dehnt sich aus.

Nach durchschnittlich 13 Millionen Jahren ist die Molekülwolke so dünn, dass keine
Sternentstehung mehr möglich ist. Weitere 7 Millionen Jahre später hat sich die
Molekülwolke vollständig im ISM verteilt.

Da es nicht überall gleich warm war, ist die Verteilung der Moleküle im ISM nicht
gleichmäßig und die Gravitation wirkt unterschiedlich - Eine neue Molekülwolke
kann entstehen und der Zyklus beginnt von vorne.

2 Energieverhältnis einer stabilen Molekülwolke
Als erstes wollen wir berechnen, wie das Verhältnis zwischen der kinetischen und
der potentiellen Energie sein muss, damit die Molekülwolke stabil bleibt. Damit die
Wolke stabil ist, muss zu jeder Kraft eine gleich große Gegenkraft wirken, wir können
also die Kräfte, die nach innen wirken und die Kräfte, die nach außen wirken an
jeder Stelle miteinander gleichsetzen (mit einem Minus, weil sie in entgegengesetzte
Richtungen wirken).

Finnen = −Faußen (2.1)

Betrachten wir nun ein beliebiges infinitesimal kleines Flächenelement A innerhalb
der Molekülwolke. Den Abstand des Flächenelements vom Schwerpunkt nennen wir
r, die Masse, die weiter innen, als das Flächenelement liegt m.

Nach innen wirkt ausschließlich die Gravitationskraft, allerdings nur von jenen Teil-
chen, die sich in der Gravitationswolke weiter innen befinden (Die Gravitation der
weiter außen liegenden Teilchen zieht die Molekülwolke nach außen, allerdings ist
diese Kraft genauso groß wie der Druck dieser Teilchen nach innen, so dass die-
se Kräfte wegfallen). Laut dem Newton’schen Gravitationsgesetz können wir also
einsetzen:

Finnen = A
Gm

r
(2.2)

Nach außen wirkt der thermische Druck. Dabei muss man allerdings beachten, dass
in den benachbarten Schichten ebenfalls ein Druck herrscht, der sich damit dann
ausgleicht. Insgesamt wirkt nach außen also nur die radiale Druckänderung. Wir
können einsetzen:

2



Materiekreislauf Molekülwolken

Faußen =
dp

dr
(2.3)

Wenn wir das gleichsetzen, erhalten wir:

A
Gm

r
= −dp

dr
(2.4)

Um die Kräfte nicht nur für ein infinidesimal kleines Flächenelement sondern für
die gesamte Molekülwolke auszurechnen, müssen wir zunächst einmal beide Sei-
ten mit 4πr3 multiplizieren, um auf die Oberfläche der Kugel an der Stelle dieses
Flächenelements zu kommen.

4πAGmr2 = −4πr3 dp
dr

(2.5)

Damit wir auf die Kräfte für die gesamte Kugel kommen, müssen wir alle infinite-
simal dünnen Oberflächen summieren, wir bilden also das Integral zwischen 0 und
R

∫ R

0

4πAGmr2dr = −
∫ R

0

4πr3
dp

dr
dr (2.6)

Auf der linken Seite benutzen wir die Definition für das Kugelschalenmassenelement
dm = 4πr2A um die Gleichung zu vereinfachen

∫ R

0

Gmdm = Epot (2.7)

Auf der rechten Seite verwenden wir die partielle Integration, wobei wir dp
dr integrie-

ren und 4πr3 ableiten wollen. Wir erhalten:

p4πr3
∣∣∣∣R
0

− 3p

∫ R

0

4πr2dr (2.8)

An der Stelle 0 fällt der erste Term weg, denn der Radius bei 0 ist 0. An der Stelle
R fällt er ebenso weg, denn hier ist der Druck 0 (Schließlich drückt hier nichts mehr
von außen auf die Teile drauf). Der erste Term fällt also vollständig weg.

Um den zweiten Term zu vereinfachen, definieren wir ein Druckmittel. Dieses soll
dem durchschnittlichen Druck innerhalb der Molekülwolke entsprechen. Es muss
also gelten:

p =
pGes.

V
(2.9)

Im Zähler können wir statt dem Gesamtdruck die Druckformel, bei der die Druck-
funktion über alle Schalen der Kugel summiert wird, einsetzen und 2.9. mit V mul-
tiplizieren. Damit erhalten wir:
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Vp =

∫ R

0

4πr2dr (2.10)

Auf der rechten Seite steht genau das Integral aus 2.8. In dieser Gleichung können
wir also statt der rechten Seite die linke Seite von 2.10. einsetzen. Statt dem Druck
können wir den mittleren Druck einsetzen, weil sie im Durchschnitt gleich sind.

Epot = −3Vp2 (2.11)

Als nächstes wollen wir uns die thermische Energie ausrechnen. Dazu gehen wir
davon aus, dass die Molekülwolke aus monoatomaren Gasen besteht. Monoatomare
Gase sind Gase, die aus lauter gleichen Atomen bestehen. Beispielsweise ist Ozon
(O3) ein monoatomares Gas, weil es nur aus Sauerstoffatomen besteht. Kohlen-
dioxid (CO2) ist kein monoatomares Gas, weil da zwei Atomsorten drinnen sind:
Sauerstoffatome und Kohlenstoffatome.

Für unsere Molekülwolke ist das mit den monoatomaren Gasen eine gute Näherung,
weil sie fast ausschließlich aus Wasserstoff besteht (Schließlich hat die Sternent-
wicklung noch nicht begonnen, sodass noch keine Fusionierung stattgefunden hat).
In diesem Fall, kann man die kinetische Energie eines Teilchens mit der Formel

Ekin =
3

2
kBT (2.12)

ausrechnen, wobei kB die Bolzmannkonstante und T die Temperatur darstellt. Um
die gesamte kinetische Energie auszurechnen, muss man die kinetischen Energien
aller Teilchen summieren.

Um uns die Anzahl der Teilchen in der Molekülwolke auszurechnen, müssen wir
die Teilchendichte (n) mit dem Volumen der Molekülwolke (V ) multiplizieren. Die
gesamte kinetische Energie ist nun die Anzahl der Teilchen mal der kinetischen
Energie pro Teilchen.

Ekin =
3

2
kBTnV (2.13)

In diese Formel können wir die ideale Gasgleichung

p = kBTn (2.14)

einsetzen und erhalten so

Ekin =
3

2
pV (2.15)

Da wir den Druck über das gesamte Volumen betrachten, können wir, statt den
Druck in jedem Element extra zu betrachten, überall den Mittelwert nehmen
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Ekin =
3

2
pV (2.16)

Hier können wir wieder 2.11. einsetzen:

Ekin = −Epot

2
(2.17)

An dieser Formel erkennen wir, dass die nach außen wirkende kinetische Energie
in einer stabilen Molekülwolke immer doppelt so groß wie die nach innen wirkende
potentielle Energie sein muss. Dieses Gesetz nennt man „Virialtheorem“.

3 Jeansmasse
Die Jeansmasse ist die maximale Masse, die eine Molekülwolke besitzen kann. Wenn
die Wolke schwerer als die Jeansmasse ist, kann die thermische Energie die Gravi-
tation nicht mehr ausgleichen und es kommt zu einem Kollaps.

Im Fall eines Kollaps verliert die Molekülwolke das thermische Gleichgewicht und
die Gravitation nach innen wird stärker als der Druck nach außen. Im Virialtheorem
wird die potentielle Energie mehr als doppelt so groß wie die kinetische Energie.
Setzen wir wieder die Formeln für die kinetische und die potentielle Energie ein,
erhalten wir

−3GM2

5R2
>

3

2
kBTnV (3.1)

Für das Volumen können wir die Volumsformel der Kugel einsetzen. Damit erhalten
wir

−3GM2

5R2
>

4πR2

2
kBTn (3.2)

Da wir wissen, dass 5R2 und 3G größer als Null sind, können wir die Gleichung nach
M2 umformen, ohne das Ungleichheitszeichen zu drehen. Dabei erhalten wir:

M2 > −10R4πkBTn

3G
(3.3)

Wir wissen, dass die Masse das Volumen der Molekülwolke mal der Dichte ist.

M = V ρ =
4πR3ρ

3
(3.4)

Durch Umformen dieser Formel nach R erhalten wir

R = 3

√
3M

4πρ
(3.5)
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Das können wir in 3.3. für den Radius einsetzen.

M2 > −
10( 3

√
3M
4πρ )

4πkBTn

3G
(3.6)

Um die Formel zu vereinfachen, potenzieren wir 3.6. hoch 3

M6 > −
1000 81M4

256π4ρ4 (πkBTn)
3

27G 3
(3.7)

Um den Doppelbruch wegzurechnen, multiplizieren wir oberhalb und unterhalb des
Bruchstrichs mit 256π4ρ4. Außerdem können wir die Gleichung auf beiden Seiten
durch M4 dividieren und den Bruch durch 216π3 kürzen.

M2 > −375(kBTn)
3

32G 3πρ4
(3.8)

Durch bilden der Wurzel erhalten wir die Jeansmasse

MJeans =

√
−375(kBTn)3

32G 3πρ4
(3.9)

In diese Formel können wir die Konstanten und die Teilchendichte von Wasserstoff
einsetzen (Da noch keine Fusionsprozesse stattgefunden haben, besteht die Mole-
külwolke hauptsächlich aus Wasserstoff). Dabei kommen wir auf einen Wert von

MJeans =

√
T 3

ρ
8, 4x1019kg =

√
T 3

ρ
4, 2x10−11M� (3.10)

Dieses Ergebnis stimmt jedoch nicht mit der Realität überein: Es gibt Molekülwol-
ken (auch kugelförmige), die viel schwerer als die Jeansmasse sind, aber trotzdem
nicht kollabieren. Teilweise kollabieren auch nur Teile einer Molekülwolke, die selber
größer als die Jeansmasse sind und es bleibt ein Rest über, der vorerst eine Mo-
lekülwolke bleibt. Wenn das Jeanskriterium stimmen würde, wären schon nach ein
paar Millionen Jahren alle Molekülwolken so schwer gewesen, dass sie alle kollabiert
wären. Dann gäbe es auch keine weiteren Molekülwolken mehr, um die Sternentste-
hung fortzusetzen.

Derzeit erklärt man sich diesen Fehler damit, dass Magnetfelder und Turbulenzen im
Gas zusätzliche Energie erzeugen. Bei anderen Molekülwolken stellt die Jeansmasse
eine gute Näherung dar. Hier vermutet man, dass die Magnetfelder ausgedünnt und
die Turbulenzen im Gas gedämpft sind, so dass dadurch kaum zusätzliche Energie
entsteht.
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4 Radius einzelner Teilchen bei einem Kollaps
Als nächstes wollen wir eine Gleichung aufstellen, mit der man sich den Radius r
von jedem Teilchen zu jedem beliebigen Zeitpunkt t ausrechnen kann, falls man den
Anfangsradius des Teilchens und die Dichte der Molekülwolke gegeben hat. Dabei
werden wir zunächst die Reibung und die Stöße der Teilchen untereinander vernach-
lässigen.

Die Teilchen werden von der Gravitationskraft der Molekülwolke nach innen gezogen,
also können wir das Newton’sche Gravitationsgesetz verwenden:

F = G
mM

r2
(4.1)

M ist in diesem Fall nur die Masse des Teils der Molekülwolke, der weiter innen als
das Teilchen in der Molekülwolke liegt, denn alle anderen Teile ziehen das Teilchen
ja nicht nach innen. Wir können die Formel für die Kraft: F = ma in die Formel
einsetzen und erhalten:

ma = G
mM

r2
(4.2)

Diese Formel lässt sich durch m kürzen. Für M können wir die Volumsformel der
Kugel mal der Dichte einsetzen:

a = Gρ
4πr3

3r2
(4.3)

Diese Formel kann man durch r2 kürzen

a = Gρ
4πr

3
(4.4)

Das ist die Gleichung des harmonischen Oszillators. Schließlich pendelt das Teilchen
ohne Einwirkung von Reibung (die wir in unserer Rechnung ja vernachlässigt ha-
ben), immer zwischen den zwei gegenüberliegenden Seiten der Oberfläche der Kugel
mit Radius r hin und her: Zuerst fliegt das Teilchen wegen der Gravitation in den
Schwerpunkt. Dort bleibt es jedoch wegen der Trägheit nicht abrupt stehen, sondern
würde mit der gleichen Geschwindigkeit weiterfliegen, wenn nicht die Schwerkraft
in die andere Richtung ziehen, und das Teilchen mit der gleichen Beschleunigung
verlangsamen würde. Das geht so lange, bis das Teilchen beim selben Radius die
Geschwindigkeit Null erreicht und der Vorgang von vorne anfängt.

Da die Beschleunigung die zweite Ableitung des Radius ist, kann man diese Glei-
chung auch als lineare homogene Differentialgleichung zweiter Ordnung auffassen:

r̈ − Gρ
4π

3
r = 0 (4.5)

Das charakteristische Polynom ist
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λ2 − Gρ
4π

3
= 0 (4.6)

Durch Ausrechnen von Lambda erhält man

λ = ±
√

4πGρ

3
(4.7)

Die allgemeine Lösung der Differentialgleichung lautet also:

r(t) = Aet
√

4πGρ
3 + Be−t

√
4πGρ

3 (4.8)

Für die spezielle Lösung benötigen wir noch Randwertbedingungen. Den Radius
zum Zeitpunkt Null wollen wir Anfangsradius R nennen und wir wissen, dass die
Geschwindigkeit zum Zeitpunkt Null Null sein muss. Wir erhalten also die Rand-
wertbedingungen

r(0) = R (4.9)

ṙ(0) = 0 (4.10)

Durch Einsetzen der ersten Randwertbedingung erhalten wir

A+ B = R (4.11)

Um die zweite Randwertbedingung einzusetzen, benötigen wir die Ableitung der
Funktion

ṙ(t) =

√
4πGρ

3
Aet
√

4πGρ
3 −

√
4πGρ

3
Be−t

√
4πGρ

3 (4.12)

Das Einsetzen in die Randwertbedingung ergibt:

0 =

√
4πGρ

3
A−

√
4πGρ

3
B (4.13)

Wir können jetzt die gesamte Gleichung durch
√

4πGρ
3 dividieren und erhalten so

0 = A− B (4.14)

A = B (4.15)

Da A und B laut 4.11. zusammen R ergeben müssen, wissen wir
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A = B =
R

2
(4.16)

Einsetzen von A und B in die allgemeine Lösung (4.8.) ergibt

r(t) =
R

2
(et
√

4πGρ
3 + e−t

√
4πGρ

3 ) (4.17)

Mit Hilfe der Euler’schen Formel können wir dieses Ergebnis weiter vereinfachen:

cos(x) =
e ix + e−ix

2
(4.18)

Für x können wir −ti
√

4πGρ
3 einsetzen und erhalten so

cos(−ti
√

4πGρ

3
) =

et
√

4πGρ
3 + e−t

√
4πGρ

3

2
(4.19)

Statt der rechten Seite von 4.19. können wir in die spezielle Lösung (4.17.) die linke
Seite von 4.19. einsetzen und erhalten:

r(t) = Rcos(−ti
√

4πGρ

3
) (4.20)

Dass in dieser Formel die imaginäre Einheit i vorkommt, ändert nichts daran, dass
für r immer reelle Zahlen herauskommen. Es ist nämlich auch der Cosinus einer
komplexen Zahl immer eine reelle Zahl.

5 Frei-Fall-Zeit
Die Frei-Fall-Zeit ist die Zeit, die ein Teilchen benötigt, um in den Mittelpunkt
der Molekülwolke zu fallen. Um das auszurechnen, müssen wir in die Bewegungs-
gleichung nur für den Radius Null einsetzen und die Formel nach t umstellen. Das
Einsetzen von r = 0 in die Formel liefert:

0 = Rcos(−ti
√

4πGρ

3
) (5.1)

In dieser Formel können wir auf beiden Seiten durch R dividieren, sodass R wegfällt.
Das bedeutet, dass die Zeit, wie lange das Teilchen benötigt, um in die Mitte der
Molekülwolke zu gelangen, nicht vom Anfangsradius abhängt. Je weiter draußen
sich das Teilchen befindet, desto schneller fällt es, sodass alle Teilchen gleichzeitig
im Mittelpunkt ankommen. Auf den ersten Blick erscheint das unsinnig, weil die
Gravitation außen schwächer als innen ist, aber die Fallbewegung ist eine beschleu-
nigte Bewegung, was bedeutet, dass die Geschwindigkeit mit zunehmenden Weg
größer wird, sodass sich das wieder ausgleicht.
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Jetzt wird auch klar, warum die Molekülwolke nur einmal in sich zusammenfällt und
nicht (wie es die Formel des harmonischen Oszillators (4.4) nahelegen würde) hin
und herschwingt: Alle Teilchen kommen gleichzeitig in der Mitte an und so wird spä-
testens hier jedes Teilchen zurückgestoßen. Die Gleichung wird nahe des Zentrums
also falsch, weil wir dort nicht mehr die Teilchenstöße vernachlässigen können. Bis
relativ (im Vergleich zur Größe der Molekülwolke) kurz vorher, können wir diese
noch vernachlässigen, sodass unsere Gleichung trotzdem eine gute Näherung ist.

Nach der Division durch R schaut die Gleichung so aus:

0 = cos(−ti
√

4πGρ

3
) (5.2)

Als nächstes nehmen wir den Arcuscosinus. Dabei erhalten wir auf der linken Seite
unendlich viele unterschiedliche Lösungsmöglichkeiten, weil das Teilchen laut Nä-
herung unendlich oft am Mittelpunkt der Molekülwolke vorbeipendelt. Wir setzen
die niedrigste positive Lösung ein, weil wir wissen wollen, nach welcher Zeit das
Teilchen das erste mal im Schwerpunkt ankommt.

π

2
= −ti

√
4πGρ

3
(5.3)

Um die Wurzel und die imaginäre Einheit zu eliminieren, quadrieren wir die Gleichung
auf beiden Seiten

π2

4
= t2

4πGρ

3
(5.4)

Durch Umformen der Gleichung nach t erhalten wir die Formel für die Frei-Fall-Zeit

tff =

√
3π

16Gρ
(5.5)

Durch Einsetzen der Konstanten erhalten wir

tff =
280
√
ρ

Jahre (5.6)

6 Volumen der Molekülwolke bei einem Kollaps
Analog zu der Bewegungsgleichung, die jedem Zeitpunkt einen Radius zuordnet,
wollen wir eine Gleichung aufstellen, die jedem Zeitpunkt ein Volumen der Mole-
külwolke zuordnet. Der Radius der Molekülwolke ist immer durch den Radius des
äußersten Teilchens bestimmt. Für das äußerste Teilchen gilt unsere Bewegungsglei-
chung

r(t) = Rcos(−ti
√

4πGρ

3
) (6.1)
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genauso wie für alle anderen Teilchen auch, nur dass R dann gleichzeitig dem An-
fangsradius der Molekülwolke entspricht. Man kann jetzt den Radius des äußersten
Teilchens zu jedem Zeitpunkt in die Volumsformel der Kugel einsetzen und erhält
damit:

V (t) =
4π[Rcos(−ti

√
4πGρ

3 )]3

3
(6.2)

In dieser Formel konvergiert das Volumen gegen Null, wenn t gegen die Frei-Fall-
Zeit konvergiert. Das stimmt natürlich so nicht, weil wir den thermischen Druck, der
nach außen wirkt, vernachlässigt haben. Dennoch ist es eine gute Näherung, weil
die Größe eines Sterns im Vergleich zur Größe einer Molekülwolke vernachlässigbar
gering ist. (Das Volumen der kleinsten Molekülwolke ist eine Billiarde mal größer als
das Volumen des größten Sterns. Wenn der Stern in Wien wäre und einen Radius
von einem Meter hätte, würde die Molekülwolke bis nach Bratislava reichen).

7 Drehimpuls
So wie fast alle Objekte im All, drehen sich auch die Molekülwolken. Auch sie haben
also einen Drehimpuls. Die allgemeine Formel für den Drehimpuls lautet:

~J = ~pxr = m~vxr (7.1)

Da die Drehimpulserhaltung gilt, muss ~J auch beim Kollaps der Molekülwolke im-
mer gleich groß bleiben. Da der Radius dabei kleiner wird und die Masse erhalten
bleibt, bedeutet das, dass die Rotationsgeschwindigkeit bei einem Kollaps immer
größer wird.

Um uns auszurechnen, wie stark sich die Geschwindigkeit ändert, setzen wir, wie
schon für die Volumsberechnung, für den Radius die Bewegungsgleichung des äu-
ßersten Teilchens ein.

~J = m~vxRcos(−ti
√

4πGρ

3
) (7.2)

Umstellen dieser Gleichung nach ~v ergibt

~v =
~J

mRcos(−ti
√

4πGρ
3 )

(7.3)

Man merkt, dass die Geschwindigkeit gegen Unendlich konvergiert, wenn t gegen die
Frei-Fall-Zeit konvergiert. Sie konvergiert nicht ganz gegen Unendlich, weil das Vo-
lumen nicht ganz gegen Null konvergiert, aber sie wäre auf jeden Fall deutlich größer
als die Lichtgeschwindigkeit. Des weiteren wären die Fliehkräfte bei dieser Geschwin-
digkeit so groß, dass der Stern unmöglich zusammenhalten könnte. (Wenn man die
Zahlen einer durchschnittlichen Molekülwolke einsetzt ist die Winkelgeschwindigkeit
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10-Millionen mal schneller als die von einem durchschnittlichen Stern).

Es gibt verschiedene Erklärungsansätze, wo der ganze Drehimpuls hin verschwin-
det. Da gar so viel Drehimpuls verloren geht, treffen wahrscheinlich gleich mehrere
Erklärungsansätze zu.

• Ein Erklärungsansatz, der sicher zutrifft, ist, dass der Stern Drehimpuls in
die protoplanetare Scheibe abgibt. Später übernehmen die Planeten diesen
Drehimpuls

• Die Molekülwolke ist durch Magnetfelder mit ihrer Umgebung verbunden. Bei
der Kontraktion bremsen die Magnetfelder die Molekülwolke ab.

• Winde und Jets bremsen die nach der Kontraktion abgeflachte „protostellare
Scheibe“

• Die Wolke bricht auseinander, was zu Mehrfachsternsystemen führt. Viel Ener-
gie verschwindet in den Orbit der Sterne

8 Kräfteänderung während des Kollaps
Die Kräfte, die auf die Molekülwolke wirken, ändern sich im Laufe des Kollaps sehr
stark: Die Gravitation wird stärker, weil die Teilchen immer näher zum Schwerpunkt
kommen, gleichzeitig wird auch der thermische Druck stärker, weil die Teilchen im-
mer stärker zusammengedrückt werden. Diese Änderung ist deshalb wesentlich, weil
der Kollaps so lange fortgesetzt wird, bis die Kräfte wieder im Gleichgewicht sind.

Dabei werden auch Scheinkräfte wie die Trägheit interessant, weil sie dafür sorgen,
dass der Stern nicht sofort im Kräftegleichgewicht stehen bleibt, sondern vorher hin-
und herpendelt, bis die Reibung diese Bewegung abgebremst hat.

Die Formel für die Gravitation ist laut Newton’schen Gravitationsgesetz

F = G
mM

r2
(8.1)

Da die Masse der Molekülwolke (aufgrund der Massenerhaltung) und die Gravitati-
onskonstante immer gleich bleiben, bedeutet das, dass die Zunahme der Gravitation
1
r2 beträgt.

Für den Druck gilt

p = ρTRs (8.2)

wobei wir für die Dichte die Masse durch die Volumsformel einsetzen, um wieder
auf eine r-Abhängigkeit zu kommen.

p =
3MTRs

4πr3
(8.3)
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Der thermische Druck nimmt also mit dem Faktor 1
r3 zu.

Die Voraussetzung für einen Kollaps war, dass die Gravitationskraft stärker als der
Druck ist. Da der Druck jedoch mit kleiner werdendem Radius schneller zunimmt
als die Gravitation, ist es nur eine Frage der Zeit, bis sie sich wieder ausgleichen
und im thermischen Gleichgewicht sind.

Wenn wir ausrechnen wollen, wie weit die Molekülwolke in sich zusammenfällt, müs-
sen wir die Formeln der beiden Kräfte gleichsetzen. Vor einer der Formeln schreiben
wir wieder ein Minus, weil die Kräfte in die entgegengesetzten Richtungen wirken.

3MTRs

4πr3
= −GM

r2
(8.4)

Diese Gleichung kann man nach r umstellen und erhält so

r = −3TRs

4πG
(8.5)

Durch Einsetzen der Gravitationskonstante und der spezifischen Gaskonstante vom
Wasserstoff erhält man

r = 1, 5x1013T (8.6)

Das ist ein Wert der viel größer ist als Sterne tatsächlich sind. Auch diese Formel
führt also auf einen Widerspruch.

9 Magnetfelder
Ähnlich wie die Planeten, besitzen auch die Molekülwolken Magnetfelder. Dafür
verantwortlich ist die kosmische Strahlung, die dafür sorgt, dass die Molekülwolken
elektrisch leitfähig sind. In diesem Fall gilt der sogenannte „Satz des erhaltenen
Flusses“: Der magnetische Fluss zwischen mehreren Gasteilchen bleibt immer gleich
groß. Dabei spielt es auch keine Rolle, ob sich der Abstand zwischen diesen Teilchen
verändert.

Bei der Kontraktion der Molekülwolke nähern sich die Gasteilchen sehr stark anein-
ander an, der magnetische Fluss zwischen diesen Teilchen bleibt jedoch gleich. Das
bedeutet, dass die Magnetfeldstärke, also die magnetische Kraft pro Flächeneinheit,
sehr stark zunimmt.

Auch diese Überlegung stimmt nicht mit der Realität überein. Würde diese Überle-
gung stimmen, müssten die Magnetfelder in einem Stern 100-Millionen mal stärker
sein, als sie in den Sonnenflecken, also den Stellen des Sterns mit dem höchsten
Magnetfeld, tatsächlich sind.
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