
Beweistechniken

Alle Angaben ohne Gewähr

Jedes Feedback hilft, die vorliegenden und künftigen Skripten zu
verbessern

Wie im Skriptum Unimathe für Anfänger bereits klar wurde, ist das Beweisen es-
sentiell für die höhere Mathematik. Die meisten Beweise funktionieren nicht nach
Schema F sondern man muss einfach gute Ideen haben. Dazu braucht es Übung
und Erfahrung. Dennoch gibt es einige grundlegende Beweistechniken, die in diesem
Skriptum vorgestellt werden.

1 Nichtmathematische Beweise

Dieses Kapitel umfasst Beweisideen, die zwar teilweise eine Idee geben, ob und war-
um ein Satz stimmt, einen mathematischen Beweis jedoch nicht ersetzen können.
Das Kapitel ist auch als Warnung gedacht, welche scheinbar richtigen Beweisme-
thoden, man nicht verwenden darf.

1.1 Beispiele einsetzen

Man kann keinen Satz, der für unendlich viele Zahlen gilt, mit Hilfe von endlich
vielen Beispielen beweisen, auch dann nicht, wenn sich die Beispiele scheinbar aus-
einander entwickeln. Wenn man zum Beispiel in die Ungleichung 0, 0001x4 < x2 die
Zahlen 1, 2, 3 und 4 einsetzt, würde man vermuten, dass die Ungleichung stimmt,
weil sich die Funktionen für gröÿere Zahlen scheinbar immer weiter voneinander
entfernen. Wenn man die Zahlen jedoch groÿ genug wählt, steigt die x4-Funktion
stärker an und die Entwicklung dreht sich um.

Ein Beispiel in dem sich die Zahlen tatsächlich unendlich weit auseinander bewe-
gen, ist die Gleichung x4 > 0, 0001x2. Dennoch geht die Methode auch bei dieser
Ungleichung schief, wenn man nicht extrem kleine Werte ausprobiert (für diese gilt
die Ungleichung nicht).

Selbst wenn man ein Computerprogramm Beispiele ausprobieren lässt, kann dieser
in endlicher Zeit nicht unendlich viele Werte durchprobieren. Das Einsetzen von
Beispielen kann daher bestenfalls der Intuition dienen.

1.2 Graphischer Beweis

Eine sehr ähnlicher Beweismethode mit den gleichen Problemen, ist der graphische
Beweis: Auch hier kann man die Funktion nur in einem eingeschränkten Intervall
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zeichnen und würde daher bei der Ungleichung 0, 0001x4 < x2 wenn sie nur zwi-
schen 0 und 4 gezeichnet ist, glauben dass sie stimmt.

Bei der Gleichung x4 > 0, 0001x2 würde der Beweis schon daran scheitern, dass der
Stift zu dick ist. Abgesehen davon erzeugt man die Graphik mit Hilfe einer Werte-
tabelle, in der nur endlich viele Werte eingetragen sind.

Auch ein Computer kann so eine Graphik nur zeichnen, indem er endlich viele Punkte
berechnet. Der Graphische Beweis ist daher ebenfalls nicht aussagekräftig.

1.3 Intuitiver Beweis

Manche Sätze sind so intuitiv, dass man gar keinen Beweis für nötig hält. Dennoch
sollte man immer versuchen einen Beweis durchzuführen, damit man nicht auf we-
niger intuitive Teile vergisst.

Beispielsweise wird intuitiv leicht klar, dass die Quadratwurzel aus 4 gleich 2 ist,
wenn man 4 Punkte wie am Würfel als Quadrat aufzeichnet und erkennt, dass die
Seitenlänge gleich 2 ist. Allerdings übersieht man bei dieser intuitiven Umformung,
dass -2 ebenfalls eine Lösung ist.

2 Was für alle mathematischen Beweistechniken
relevant ist

Einige Aspekte muss man bei jeder Beweistechnik beachten. Hier sind die wichtigs-
ten aufgelistet

2.1 Arbeite nur mit mathematischen De�nitionen

Die mathematischen De�nitionen sind so formuliert, dass man in diese sinnvoll et-
was einsetzen und umformen kann. Wenn man beispielsweise beweisen möchte, dass
die Ableitung von x gleich 1 ist, kann man das mit der intuitiven Vorstellung einer
Steigung nicht erreichen.

Man könnte die Funktion zwar aufzeichnen und deshalb vermuten, dass die Aussage
stimmt, mathematisch bewiesen ist die Aussage dadurch jedoch nicht: Beispiels-
weise würde man durch einen graphischen Beweis auch glauben, die Steigung der
Funktion 1, 0001x wäre 1, obwohl das nur näherungsweise stimmt und bei der Funk-
tion x+ 0, 00001x2 stimmt es für groÿe x nicht einmal näherungsweise.

Verwendet man hingegen die mathematische De�nition

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
(2.1)

muss man nur für f(x) x und für f(x+h) x+h einsetzen

f ′(x) = lim
h→0

x+ h− x

h
(2.2)
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und die Formel kürzt sich fast automatisch zu 1.

2.2 Beachte immer alle möglichen Fälle

Man muss bei jedem Umformungsschritt aufpassen, dass man diese Umformung in
allen Fällen durchführen kann. Ist das nicht der Fall muss man eine entsprechende
Fallunterscheidung durchführen und in den Fällen, bei denen die Umformung nicht
erlaubt ist, eine andere Umformung wählen.

Betrachtet man beispielsweise die Formel x2 + x = 0 bietet es sich an durch x zu
dividieren. Das darf man aber nur machen, wenn x nicht selber 0 ist. Für x 6= 0
kommt man auf das Ergebnis x=-1.

Den Fall das x selber 0 ist, muss man gesondert betrachten. Durch Einsetzen dieses
Werts in die Formel erkennt man, dass x=0 tatsächlich eine Lösung ist. Hätte man
die Fallunterscheidung nicht gemacht, wäre einem diese Lösung entgangen.

2.3 Achte darauf, dass du alle Teile des Satzes bewiesen hast

In vielen Sätzen stecken mehrere Aussagen drinnen, teilweise stecken sogar mehre-
re Aussagen in nur einem Symbol. Ein Beispiel dafür ist das Symbol ∃!, bei dem
man nicht nur überprüfen muss, dass ein Element existiert, dass die Bedingungen
erfüllt, sondern auch, das die Bedingungen von keinem anderen Element erfüllt wird.

Ein anderes Beispiel ist der Äquivalenzpfeil: Um zu zeigen, dass A⇔ B gilt, muss
man sowohl A ⇒ B als auch A ⇐ B beweisen, denn aus A ⇒ B, folgt zwar dass
aus A B folgen kann, nicht aber dass aus A B folgen muss.

Betrachten wir beispielsweise die Aussage x = 2 ⇒ x2 = 4. Aus dieser Aussage
folgt natürlich, dass aus x2 = 4 auch x=2 folgen kann. (Wenn aus x2 = 4 x 6= 2
folgen würde, wäre die Aussage widerlegt). Die Aussage besagt jedoch nicht, dass
aus x2 = 4 x = 2 folgen muss (Es könnte daraus auch x = −2 folgen)

2.4 Verwende abgesehen von den Vektorraumaxiomen nur
Umformungen, die du bereits bewiesen hast

Kein Schritt (auch wenn er noch so intuitiv erscheint) darf vorausgesetzt werden
(siehe dazu auch intuitiver Beweis). Die einzige Ausnahme sind die Vektorraumaxio-
me: Diese musste man an den Anfang setzen, damit man überhaupt etwas beweisen
kann.

3 Mathematische Beweistechniken

Nachdem wir lang und breit durchgegangen sind, was alles nicht geht, kommen wir
endlich zu den tatsächlich mathematisch funktionierenden Beweistechniken
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3.1 Beispiele einsetzen

Diese Beweistechnik kann man nur verwenden, wenn die Aussage die man zeigen
will ist, das etwas existiert. Beispielsweise wenn man beweisen soll, dass die Wurzel
aus 4 rational ist, bedeutet das mathematisch, dass ein Bruch p

q existiert, für den

gilt (pq )
2 = 4. Sofern einem ein Beispiel einfällt (zum Beispiel 2

1 ), kann man dieses

in die De�nition einsetzen (( 21 )
2 = 4) und erkennt, dass der Satz stimmt.

3.2 Direkter Beweis

Den direkten Beweis benutzt man, wenn man nach Einsetzen der mathematischen
De�nition einen Satz der Form: Für alle ... gilt ... erhält

Möchte man beispielsweise beweisen, dass alle Polynomfunktionen di�erenzierbar
sind, erhält man nach Einsetzen der De�nition den Satz: Für alle Polynomfunktio-
nen gilt: Es existiert eine Ableitungsfunktion. Der erste Schritt ist, dass man die
allgemeinste Form in die De�nition einsetzt. In unserem Beispiel ist es die allge-
meinste Polynomfunktion

a0 + a1x+ a2x
2 + ... = a0x

0 + a1x
1 + a2x

2 + ... =

∞∑
n=0

anx
n (3.1)

In dieser Darstellung sind alle Polynomfunktionen enthalten, beispielsweise ist die
Funktion x2 der Fall, das a2 = 1 und alle anderen an = 0 sind. Die Aussage, dass
eine Ableitungsfunktion existiert, zeigt man in dem Fall am besten nicht durch Ein-
setzen eines Beispiels (obwohl auch in dem Satz ein existiert steht), weil ableiten
einfacher als integrieren ist.

Wenn man die Summen- und Produktregel bereits bewiesen hat (diese kann man
auch direkt durch Einsetzen in die De�nition der Ableitung und Umformen bewei-
sen), kann man die Funktion ableiten und kommt dadurch automatisch auf eine
existierende Ableitungsfunktion:

∞∑
n=0

nanx
n−1 = 0a0x

−1 + 1a1x
0 + 2a2x

1 + ... = a1 + 2a2x+ ... (3.2)

Zusammengefasst funktioniert ein direkter Beweis, indem man die allgemeinste Form
in die De�nition einsetzt und so lang umformt, bis dort die Aussage steht, die man
zeigen möchte (in unserem Beispiel die Ableitungsfunktion, die existieren soll).

3.3 Indirekter Beweis

Den indirekten Beweis kann man verwenden, wenn man eine Aussage die stimmt
aufteilt. Beispielsweise kann man die Aussage �Die Wurzel aus 2 existiert� aufteilen
in die Aussagen �Die Wurzel aus 2 ist rational� und �Die Wurzel aus 2 ist irratio-
nal�. Wenn man beweisen möchte, dass die Wurzel aus 2 irrational ist, kann man
die Aussage, dass die Wurzel aus 2 rational ist widerlegen und dadurch erkennen,
dass die Wurzel aus 2 irrational ist (denn eine der beiden Aussagen muss stimmen,
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wenn die Wurzel aus 2 existiert).

Beim Widerspruchsbeweis genügt es nicht immer, die Aussage zu beweisen, die
man intuitiv als das Gegenteil au�assen würde: Wenn man beispielsweise die Aus-
sage 1

0 ∈ Q beweisen möchte, könnte man auf die Idee kommen, die Aussage 1
0 ∈ I

zu wiederlegen. Das wird einem auch gelingen, denn diese Aussage ist tatsächlich
falsch. Den Fehler, den man gemacht hat, ist, dass die Aussage, die man aufgeteilt
hat (das 1

0 existiert), schon falsch ist.

Am einfachsten bildet man das Gegenteil, wenn man das Zeichen das Vorrang hat
(Logische Operatoren wie =, ∈ oder ⇒ vor Potenz- Punkt- und Strichrechnung)
durchstreicht bzw. die Durchstreichung wegnimmt: Beispielsweise wird aus 1

0 ∈ Q
1
0 /∈ Q (das beinhaltet bereits den Fall, das 1

0 nicht existiert). Umgekehrt ist das
Gegenteil von 1

0 /∈ Q wieder 1
0 ∈ Q (das beinhaltet den Fall, dass 1

0 nicht existiert
wiederum nicht).

Eine Besonderheit bildet der Folgepfeil: Den muss man umdrehen und von den
beiden Aussagen davor und danach das Gegenteil bilden, denn das Gegenteil der
Aussage �Aus A folgt B� ist �Aus A muss nicht B folgen� und das bedeutet, dass
es eine Aussage ungleich B gibt, aus der A folgen kann. Wenn jedoch aus allen
Aussagen ungleich B Aussagen ungleich A folgen, stimmt das Gegenteil nicht und
der Satz ist bewiesen.

Der Vorteil, wenn man das Gegenteil gebildet hat, ist, dass es leichter ist, einen Satz
zu widerlegen, als einen Satz zu beweisen. Um das zu verstehen, wollen wir einen
Satz in mehrere Teilsätze (sogenannte notwendige Bedingungen) aufteilen.

Wir betrachten den Satz x = 2 ⇔ x2 = 4 Diesen kann man in die zwei Sätze
x = 2⇐ x2 = 4 und x = 2⇒ x2 = 4 aufteilen.

Wenn man den Satz beweisen möchte, genügt es nicht, einen Satz, zum Beispiel
x = 2 ⇒ x2 = 4 zu beweisen, denn dann könnte immer noch x = 2 ⇐ x2 = 4
falsch sein. Wenn man den Satz jedoch widerlegen möchte, genügt es einen Satz,
zum Beispiel x = 2 ⇐ x2 = 4 zu widerlegen und dann ist es egal, ob die andere
Aussage auch falsch ist, der gesamte Satz ist auf jeden Fall falsch.

Noch e�ektiver ist es, wenn man einen Satz in unendlich viele Teile aufteilen kann,
zum Beispiel kann man den Satz x = A⇔ x2 = A2 für alle A ∈ R in den Satz für
A=1, den Satz für A=2 und so weiter aufteilen. Wenn man feststellt, dass der Satz
für A=2 falsch ist, ist es unerheblich ob der Satz für irgendein anderes A stimmt.

3.4 Vollständige Induktion

Die vollständige Induktion verwendet man, wenn man einen Satz zeigen möchte, der
für alle natürlichen Zahlen gilt. Sie besteht aus zwei Teilen: Dem Induktionsanfang
und dem Induktionsschritt.

Im Induktionsanfang zeigt man durch Einsetzen, dass die Aussage für die niedrigste
natürliche Zahl (je nach De�nition 0 oder 1) stimmt. Möchte man beispielsweise
beweisen, dass n ≤ n2 für alle n ∈ N∗, setzt man im Induktionsanfang für n=1 ein
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und erhält die wahre Aussage 1 ≤ 1.

Im Induktionsschritt zeigt man (wieder durch Einsetzen), dass die Aussage sofern
sie für n gültig ist, auch für n+1 gültig ist. Wenn man diese Aussage bewiesen hat,
weiÿ man, dass die Aussage für jede beliebige natürliche Zahl gilt, denn man kann
von der Zahl 1 (von der wir schon im Induktionsanfang gezeigt haben, dass sie die
Aussage erfüllt), beliebig oft den Induktionsschritt ausführen (von dem wir gezeigt
haben, dass er die Gültigkeit nicht ändert) und erreichen so jede Zahl.

Für unser Beispiel bedeutet das: Wenn das Beispiel für eine beliebige Zahl n gilt
(also n ≤ n2), dann soll sie auch für die nachfolgende Zahl n+1 gelten (also
n + 1 ≤ (n + 1)2). Insgesamt lässt sich die Aussage, die wir im Induktionsschritt
beweisen wollen, also so aufschreiben:

n ≤ n2 ⇒ n+ 1 ≤ (n+ 1)2 (3.3)

Der weitere Vorgang des Induktionsbeweises ist immer gleich: Man formt eine Seite
der Gleichung auf der rechten Seite des Folgepfeils so um, dass dieselbe Seite auf
der linken Seite des Folgepfeils abgetrennt darin enthalten ist. Dann setzt man in
diesen Teil die andere Seite der Gleichung ein.

In unserem Beispiel kann man die rechte Seite (n+1)2 so umformen, dass die linke
Seite n2 abgetrennt ist. Man erhält dadurch

n ≤ n2 ⇒ n+ 1 ≤ n2 + 2n+ 1 (3.4)

Für den abgetrennten Teil kann man den Teil auf der anderen Seite des Kleinerzei-
chens einsetzen und kommt auf eine wahre Aussage

n+ 1 ≤ n+ 2n+ 1 (3.5)

Die rechte Seite ist um mindestens 2n gröÿer als die linke Seite. (Mindestens des-
halb, weil wir in die Gleichung etwas kleineres eingesetzt haben).

Bei Ungleichungen könnte diese Umformung auch schief gehen, nämlich dann wenn
die Seite, die man einsetzt, so viel kleiner ist, dass das Einsetzen der Aussage zu
einem Widerspruch führt. (Das ist dann der Fall, wenn sich die Funktionen an ir-
gendeiner Stelle annähern). In dem Fall kann man versuchen, den gröÿeren in den
kleineren Teil einzusetzen (Das funktioniert jedoch auch nur, wenn sich die Funk-
tionen an allen Stellen annähern.

Wenn sich die Funktionen manchmal annähern und manchmal entfernen, funk-
tioniert der Induktionsbeweis garnicht und man muss eine andere Beweistechnik
verwenden.

3.5 Verallgemeinerte Induktion

Eine verallgemeinerte Form der Induktion kann man für alle Mengen mit konstanten
Abständen verwenden. In dem Fall ändert sich der Induktionsschritt: Man setzt statt
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n+1 n+i ein, wobei i der Abstand zwischen den nacheinander folgenden Elementen
ist.

Möchte man beispielsweise die Aussage −2n ≤ −3n für alle positiven geraden Zah-
len beweisen, muss man im Induktionsschritt n+2 einsetzen, weil die nacheinander
folgenden geraden Zahlen den Abstand 2 haben.

Wenn sich das Intervall ändert, kann sich auch der Induktionsanfang ändern:

Wenn das Intervall eine Untergrenze besitzt, muss man diese in den Induktions-
anfang einsetzen. Wenn man beispielsweise die Aussage 2n ≤ n2 für alle n ≥ 2
beweisen möchte, muss man in den Induktionsanfang 2 einsetzen.

Wenn das Intervall eine Obergrenze besitzt, muss man diese in den Induktionsan-
fang einsetzen und danach den Induktionsschritt rückwärts ausführen. Möchte man
beispielsweise die Aussage −2n ≤ n2 für alle n ≤ −2 beweisen, muss man -2 in den
Induktionsanfang einsetzen. Im Induktionsschritt muss man n-1 einsetzen um die
Aussage für alle -n durch n-2-maliges Ausführen des Induktionsschritts zu beweisen.

Wenn es weder eine Ober- noch eine Untergrenze gibt, muss man in den Induktions-
anfang die Stelle einsetzen, bei der die Funktionen am nächsten zueinander sind und
den Induktionsschritt in beide Richtungen ausführen. Möchte man beispielsweise die
Aussage n2 < n4 für alle ganzen Zahlen beweisen, muss man im Induktionsschritt
n=0 einsetzen. Dadurch entwickeln sich sowohl bei der positiven Induktion mit n+1,
als auch bei der negativen Induktion mit n-1 die Funktionen auseinander, sodass man
den Induktionsschritt in beide Richtungen durchführen kann.

4 Übungsaufgaben

1. Beweise 3n > (−3)−n für alle negativen ungeraden Zahlen kleiner als -1
2. Beweise (n+ 1)2 6= 0 für alle natürlichen Zahlen
3. Beweise dass es ein Polynom mit konstanter Steigung gibt

5 Lösungen

Aufgabe 1

Diese Aufgabe muss man mit verallgemeinerter Induktion lösen. In den Induktions-
schritt muss man -3 einsetzen, denn die Aussage gilt für negative ungerade Zahlen
echt kleiner als -1 (nicht kleiner gleich -1) und die nächstkleinere Zahl ist -3. Ein-
setzen ergibt

−9 > −27 (5.1)

Den Induktionsschritt muss man in negativer Richtung durchführen und der Induk-
tionsabstand ist 2. Folglich muss man den Induktionsschritt mit n-2 durchführen
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3n > (−3)−n ⇒ 3(n− 2) > (−3)−n+2 (5.2)

Da sich die Funktionen voneinander entfernen, muss man den kleineren Teil (hier
rechts des Ungleichheitszeichens) umformen und in den gröÿeren Teil einsetzen. Die
Separation von 3n erfolgt durch Anwenden der Potenzregel für Addition

3n > (−3)−n ⇒ 3(n− 2) > (−3)−n(−3)2 = 9((−3)−n) (5.3)

Einsetzen von 3n statt 3−n ergibt die Aussage

3n > 3−n ⇒ 3(n− 2) > 27n (5.4)

und umformen nach n gibt die, für die verwendeten Werte wahre Aussage n < − 1
8 .

Man könnte jetzt auf die Idee kommen, den Beweis falsch zu deuten und zu glauben,
dass die Aussage für alle n < − 1

8 also auch zum Beispiel für n=-1 gilt. Diese
Schlussfolgerung ist falsch, denn der Beweis kam nur dadurch zustande, dass wir
angenommen haben, dass die Aussage auch für n+2 gilt (das wäre in dem Fall 1).
Für n=1 gilt die Aussage jedoch nicht, sodass sie auch für n=-1 nicht stimmen
muss (und wie man durch Einsetzen leicht feststellen kann auch nicht stimmt).

Aufgabe 2

Bei dieser Aufgabe würde man auf den ersten Blick auch glauben, dass ein Induk-
tionsbeweis sinnvoll ist. Dieser kann jedoch nicht funktionieren, weil sich die Glei-
chungen manchmal annähern und dann wieder voneinander entfernen. Tatsächlich
ist ein Widerspruchsbeweis sinnvoll. Das Gegenteil der Formel lautet

(n+ 1)2 = 0 (5.5)

Umformen der Gleichung mittels binomischer Formel und pq-Formel nach n gibt
n=-1. Da das keine natürliche Zahl ist, ist das Gegenteil der Aussage falsch und die
Aussage damit wahr.

Aufgabe 3

Diese Aussage kann man durch ein Beispiel zeigen: Die konstante Funktion x=1 ist
eine Polynomfunktion (für a0 = 1 und alle anderen an = 0). Durch Einsetzen in die
De�nition der Ableitung

f ′(x) = lim
h→0

0− 0

h
= 0 (5.6)

folgt, dass dieses Beispiel konstant ist und damit den Satz beweist.
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