
Fourierreihen

Fourierreihen dienen zur Darstellung periodischer Funktionen.

Als Basis dafür dienen zwei Funktionen: Die Sinus- und die Cosinusfunktion. Durch
Manipulation mit einer Konstanten C kann man die Eigenschaften auf vielfältige
Weise verändern:

• Verschiebung entlang der x-Achse um C: sin(x+C)

• Verschiebung entlang der y-Achse um C: sin(x)+C

• Stauchung der Periode um C: sin(Cx)

• Streckung der Amplitude um C: Csin(x)

Insbesondere kann man durch Einführung mehrerer Konstanten mehrere Eigenschaf-
ten ändern. Beispielsweise ist bei der Funktion Ksin(Cx) die Amplitute um den Fak-
tor K gestreckt und die Periode um den Faktor C gestaucht.

Durch Addition mehrerer manipulierter Sinus- und Cosinusfunktionen kann man
auch sich einander überlagernde Schwingungen darstellen.

Abbildung 1: Die Funktion sin(x) (rot) und die Funktion 0,2sin(5x) überlagern sich
zur Funktion sin(x)+0,2sin(5x) (blau).

Es gibt auch periodische Funktionen, die sich nur durch Überlagerung von unendlich
vielen Funktionen darstellen lassen:

Eckige Funktionen: An den eckigen Stellen muss man Funktionen mit einer immer
enger werdenden Krümmung dazuzählen. Erst bei unendlicher Krümmung wird die
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Funktion eckig

Zum Beispiel Dreiecksfunktion

Abbildung 2: Die Funktion 1+ 2
π cos(

π
2 x) hat schon die richtige Höhe und Periode,

an den Ecken muss man jedoch noch eine engere Kurve dazuzählen

Abbildung 3: Die Funktion 1 + 2
π cos(

π
2 x) +

2
9π cos(

3π
2 x). Man erkennt, dass die

Funktion durch dazuzählen passender weiterer Funktionen immer enger in die Ecke
hineinkommt. Eckig wird sie erst, wenn man unendlich viele Cosinusfunktionen ad-
diert.

Unstetige Funktionen: Zum Beispiel Sägezahnfunktion
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Abbildung 4: Die Funktion 2
π sin(πx)−

1
π sin(2πx)+

2
3π sin(3πx)−

1
2π sin(4πx). Man

erkennt, dass die Funktion an den Unstetigkeitsstellen besonders ungenau ist. Selbst
durch dazuzählen endlich vieler weiterer passender Funktionen wird diese Ungenau-
igkeit nie kleiner als 8,9% der Sprunghöhe. Erst bei unendlich vielen Funktionen
verschwindet diese Ungenauigkeit.

Dieses sogenannte Gibb'sche Phänomen tritt bei allen unstetigen Funktionen auf.
Zudem ist es notwendig, dass die Funktion an den Unstetigkeitsstellen den Mittel-
wert zwischen linksseitigen Grenzwert (in der Gra�k grün markiert) und rechtssei-
tigen Grenzwert (in der Gra�k blau markiert) hat, weil sie sich sonst nicht einmal
durch eine unendliche Summe darstellen lassen würde.

Funktionen mit unendlich vielen Krümmungen:Wenn man Funktionen mit einer
immer kürzeren Periode addiert, werden die Krümmungen immer kleiner. Das führt
zu Funktionen, bei denen man, egal wie weit man hineingezoomt hat, immer noch
weitere noch kleinere Krümmungen �ndet.

1 Fourierreihe mit Periode 2π

Bevor man die Fourierreihe für alle Perioden herleitet, beginnt man mit den einfachs-
ten Fourierreihen: Jenen mit der Periode 2π. Diese sind deshalb am einfachsten, weil
die Funktionen cos(x) und sin(x) bereits die Periode 2π besitzen.

Um herzuleiten, wie man eine Fourierreihe für Funktionen mit der Periode 2π auf-
stellt, kann man die Sinus- und die Cosinusfunktion durch Manipulation mit Unbe-
kannten so weit wie möglich Verallgemeinern um möglichst viele unterschiedliche
Funktionen darstellen zu können. Dannach kann man heraus�nden, wie man die
dabei auftretenden Unbekannten für eine konkrete Funktion berechnet.

Die erste Verallgemeinerung betri�t die Periode: Sie kann auch kleiner als 2π sein,
vorausgesetzt, sie geht sich ganzzahlig in 2π aus. Beispielsweise hat eine Funktion
mit der Periode π auch die Periode 2π, weil in dem Intervall die Periode 2 mal
durchlaufen wurde.

Somit haben auch die Funktionen cos(mx) und sin(nx) für alle ganzen Zahlen m,n
die Periode 2π. Insbesondere erreicht man mit dieser Verallgemeinerung (durch
Einsetzen von m=0 bzw. n=0) auch die konstanten Funktionen 0 und 1, die jede
Periode, darunter auch die Periode 2π haben.

Die Amplitute und die Verschiebung entlang der y-Achse kann beliebig beein�usst
werden, ohne die Periode zu verändern. Somit gilt die Periode 2π für die Funktionen
acos(mx)+c und bsin(nx)+k für jede reelle Zahl a,b,c,k. Insbesondere erreicht man
mit dieser Verallgemeinerung (durch Einsetzen von n=0) jede konstante Funktion k.

Für die Verschiebung entlang der x-Achse ist keine Verallgemeinerung notwen-
dig, denn es gilt laut Additionstheorem sin(x+c) = sin(c)cos(x)+cos(c)sin(x) und
cos(x+c)=cos(c)cos(x)+sin(c)sin(x). Alle Verschiebungen haben daher die Form
acos(x)+bsin(x) mit beliebigen reellen Zahlen a und b, eine Verallgemeinerung die
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man auch durch Überlagerung mehrerer Funktionen erhält.

Dieser Verallgemeinerung wollen wir uns im nächsten Schritt widmen. Alle Funk-
tionen mit derselben Periode addieren sich zur Funktion asin(nx)+bcos(nx)+c (Es
addieren sich sowohl alle Amplituden, als auch alle Verschiebungen entlang der y-
Achse). Wenn man alle möglichen Perioden addiert, erhält man die allgemeinste
Form einer Fourierreihe

f (x) =
∞∑

n=−∞
ancos(nx) + bnsin(nx) + c (1.1)

Man muss nicht über negative n addieren, weil die Cosinusfunktion Nullpunktsym-
metrisch cos(-nx)=-cos(nx) und die Sinusfunktion symmetrisch bezüglich der y-
Achse sin(-nx)=sin(nx) ist. Damit werden alle Funktionen mit negativen n auch
durch Addition über positive n erreicht. Über n=0 muss man auch nicht addieren,
weil man damit nur eine konstante Funktion erhält, die bereits durch die Konstante
c einbezogen ist. Damit vereinfacht sich 1.1 zu

f (x) =
∞∑
n=1

ancos(nx) + bnsin(nx) + c (1.2)

Insbesondere erhält man dabei für alle Perioden, die nicht in der Funktion enthalten
sind an = 0 bzw. bn = 0. Beispielsweise sind bei der Funktion sin(x) alle Konstanten
(abgesehen von a1 = 1) gleich 0.

Um herauszu�nden, wie man die Gröÿe der Konstanten an, bn und c berechnet,
muss man die Gleichung 1.1. so umformen, dass die jeweils anderen Konstanten
wegfallen. Um das zu erreichen, benötigt man einige Eigenschaften der Sinus- und
Cosinusfunktionen:

∫ π

−π
cos(nx) =

∫ π

−π
sin(nx) = π (1.3)∫ π

−π
cos2(nx) =

∫ π

−π
sin2(nx) = π (1.4)∫ π

−π
cos(nx)cos(mx) =

∫ π

−π
sin(nx)sin(mx) = 0 (1.5)∫ π

−π
cos(nx)sin(mx) =

∫ π

−π
sin(nx)cos(mx) = 0 (1.6)

Für die Formeln 1.3 - 1.6 gilt m6=n und m,n∈ N.

Wenn man die Stammfunktion von 1.2. zwischen π und -π bildet fallen laut Sum-
menregel und 1.2. alle Terme abgesehen von der Konstanten c weg. Man erhält

∫ π

−π
f (x) =

∫ π

−π
c = cπ − c(−π) = −2πc (1.7)
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Umformen nach c ergibt

c =
1

2π

∫ π

−π
f (x) (1.8)

Wenn man die Funktion 1.2. mit cos(nx) multipliziert und dann die Stammfunktion
zwischen π und -π bildet, fallen laut Summenregel und den Formeln 1.5 - 1.6 alle
Terme abgesehen von ancos

2(nx) weg. Man erhält

∫ π

−π
f (x)cos(nx) =

∫ π

−π
ancos

2(nx) (1.9)

Mit Hilfe von 1.4. kann man das Integral auf der rechten Seite au�ösen und erhält

∫ π

−π
f (x)cos(nx) = anπ (1.10)

Umformen nach an ergibt

an =
1

π

∫ π

−π
f (x)cos(nx) (1.11)

Insbesondere erhält man durch Einsetzen von n=0

a0 =
1

π

∫ π

−π
f (x)cos(0x) =

1

π

∫ π

−π
f (x) = 2c (1.12)

Man kann daher in der Formel 1.2 statt c auch a0
2 einsetzen. Damit erhält man die

Formel

f (x) =
a0
2

+
∞∑
n=1

ancos(nx) + bnsin(nx) (1.13)

Die bn erhält man analog zu den an, nur dass man 1.2. vor dem integrieren mit
sin(nx) multipliziert. Man erhält

bn =
1

π

∫ π

−π
f (x)sin(nx) (1.14)

2 Fourierreihe mit der Periode L

Wir betrachten eine Funktion, die nicht die Periode 2π, sondern eine beliebige an-
dere Periode L hat. Es gilt also f(x+L)=f(x). Um die Fourierreihe dieser Funktion zu
berechnen, ist es am einfachsten, man staucht die x-Achse so, dass die Funktion die
Periode 2π hat, wendet dann die Formel 1.13. an und streckt die x-Achse danach
wieder auf die ursprüngliche Form.
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Zum Stauchen der x-Achse dividiert man zunächst alle x-Werte durch die Periode
der Funktion L, sodass die Funktion die Periode 1 hat (f( xL+

L
L )=f(

x
L+1)=f(

x
L )).

Dann multipliziert man alle Werte mit 2π, sodass die Funktion die Periode 2π be-
sitzt (f( x2πL +2π)=f( x2πL )).

Durch Anwenden der Formel 1.13. erhält man die Fourierreihe im Bezugssystem der
gestauchten x-Achse. Diese streckt man wieder, indem man sie zunächst durch 2π
dividiert (um die Periode 1 zu erhalten) und dann wieder mit der ursprünglichen
Periode L multipliziert.

3 Rechentipps

Bevor man anfängt, die Fourierreihe zu berechnen, sollte man sich überlegen, ob
das Berechnen der Fourierreihe überhaupt Sinn macht. Wenn die Funktion aus der
Angabe bereits nur aus Sinus- Cosinus- und konstanten Funktionen besteht, ist es
nicht nur sinnlos die Fourierreihe auszurechnen, es kommt dabei auch die selbe
Funktion heraus. (Allenfalls kann man sich damit das Additionstheorem der Sinus-
und Cosinusfunktion herleiten, aber das geht mit der Euler'schen Formel leichter).

Dann muss man sich entscheiden, ob man die Funktion nur genähert oder ganz
exakt benötigt. Die Fouriernäherung, bei der man sich nur endlich viele an und bn
ausrechnen muss, ist aufgrund des Gibb'schen Phänomens nur für Werte, die weit
von einer Unstetigkeitsstelle entfernt sind, praktikabel. Direkt an den Sprungstellen
hilft nicht einmal das Aufstellen einer unendlich langen Fourierreihe. (Diese Punkte
muss man, sofern sie nicht den Mittelwert zwischen rechtsseitigen und linksseitigen
Grenzwert darstellen, gezielt umde�nieren).

Als nächstes überlegt man sich, ob die Funktion achsensymmetrisch, nullpunktsym-
metrisch oder weder noch ist. Wenn die Funktion nullpunktsymmetrisch ist, lässt
sie sich ausschlieÿlich durch die ebenfalls nullpunktsymmetrische Cosinusfunktion
darstellen (Man erspart sich das Berechnen der bn, weil diese immer 0 werden).
Analog ist das bei den achsensymmetrischen Funktionen, bei denen die Funktion
nur durch die ebenfalls achsensymmetrischen Sinusfunktionen dargestellt wird, und
man sich das berechnen der an erspart.

Wenn die Funktion weder achsensymmetrisch noch nullpunktsymmetrisch ist, kann
man das Koordinatensystem so lange in x-Richtung verschieben, bis die Funktion
achsensymmetrisch ist (das ist immer in der Mitte der Periode der Fall). Dafür setzt
man in die Funktion statt x x+c ein, wobei c die Anzahl der Einheiten ist, um die
man die x-Achse verschoben hat. Nachdem man die Fourierreihe ausgerechnet hat,
muss man das Koordinatensystem zurückschieben, indem man für jedes x wieder
x-c einsetzt.

Im nächsten Schritt berechnet man die notwendigen an und bn indem man in die
Formeln 1.11 bzw. 1.14 einsetzt. Meistens ist es zweckmäÿig, alle an bzw. alle bn auf
einmal zu berechnen, indem man die Zahl n als Unbekannte einsetzt. Häu�g benö-
tigt man dabei die Formel 1.4. zum Integrieren und die Vereinfachungen sin(πn)=0
und cos(πn)=(-1)n. Oft erleichtert auch das Umformen der Winkelfunktionen in
Exponentialfunktionen mit Hilfe der Euler'schen Formel das Integrieren. Eventuell
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ist das Ergebnis schöner, wenn man nach der Integration aus den Exponentialfunk-
tionen wieder Winkelfunktionen berechnet.

Nachdem man alle an und bn in die Formel 1.13 eingesetzt hat, ist man mit dem
Erstellen der Fourierreihe fertig.

4 Komplexe Fourierreihe

Mit Hilfe der Euler'schen Formel kann man sowohl die Sinus- als auch die Cosi-
nusfunktion in Form einer Exponentialfunktion darstellen. Dieser Rechentrick wurde
bereits erwähnt, um sich das Integrieren zu erleichtern.

Manchmal ist es auch sinnvoll, die Formel 1.13., mit der man die Fourierreihe be-
rechnet, gleich zu Beginn mit Exponentialfunktionen anzuschreiben. Das hat den
Vorteil, dass es nur noch eine Serie von Parametern (cn) gibt. Allerdings stellt sich
heraus, dass man diese von −∞ bis ∞ summieren muss.

Mit welcher Fourierreihe das Rechnen leichter ist, hängt vom Beispiel ab, ist jedoch
meist nicht erkennbar. Bei geraden oder ungeraden Funktionen ist es immer von
Vorteil wenn man zunächst mit der reellen Fourierreihe losrechnet, weil man dann
sowieso nur eine Serie von Parametern ausrechnen muss. Auch wenn man einer reel-
len Fourierreihe interessiert ist, ist das Rechnen mit der reellen Fourierreihe leichter,
weil man sich dann das Zurückrechnen mit der Euler'schen Formel erspart.

Um die Komplexe Fourierreihe zu berechnen, setzt man für sin(nx) und cos(nx) in
der reellen Fourierreihe die Euler'sche Formel ein

f (x) =
a0
2

+
∞∑
n=1

an
2
(e inx + e−inx) +

bn
2i

(e inx − e−inx) (4.1)

Teilen der Summe ergibt

f (x) =
a0
2

+
∞∑
n=1

an
2
e inx +

∞∑
n=1

an
2
e−inx +

∞∑
n=1

bn
2i

e inx +
∞∑
n=1

−bn
2i

e−inx) (4.2)

In der zweiten und vierten Summe de�niert man den Summationsindex so um, dass
er genau das Negative von sich selbst ist. Damit erreicht man, dass alle Exponenti-
alfunktionen einen positiven Exponenten haben. Da an achsensymmetrisch ist, gilt
an = a−n und da bn nullpunktsymmetrisch ist, gilt bn=−bn. Damit vereinfacht sich
4.2. zu

f (x) =
a0
2

+
∞∑
n=1

an
2
e inx +

−∞∑
n=−1

an
2
e inx +

∞∑
n=1

bn
2i

e inx +
−∞∑
n=−1

bn
2i

e inx) (4.3)

Die ersten zwei Summen beziehen sich auf dieselbe Funktion. Man kann diese zu-
sammen mit dem ersten Term (der wie durch Einsetzen leicht ersichtlich der Funk-
tion bei n=0 entspricht) zu einer Summe von −∞ bis∞ zusammengefasst werden.
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Auch die letzten beiden Summen können zu einer Summe von −∞ bis ∞ zusam-
mengefasst werden, denn der Term bei n=0 fällt weg. Damit vereinfacht sich 4.3.
zu

f (x) =
∞∑

n=−∞

an
2
e inx +

∞∑
n=−∞

bn
2i

e inx (4.4)

Die beiden verbleibenden Summen lassen sich ihrerseits wieder zusammenfassen

f (x) =
∞∑

n=−∞
(
an
2

+
bn
2i

)e inx (4.5)

Man de�niert eine neue Serie von Konstanten

cn =
an
2

+
bn
2i

(4.6)

Damit kann man die Fourierreihe noch kürzer anschreiben

f (x) =
∞∑

n=−∞
cne

inx (4.7)

Um die Gröÿe der cn zu berechnen, setzt man die Formel für an (1.11.) und die
Formel für bn (1.14.) in 4.6. ein. Damit erhält man die Formel

cn =
1

2π

∫ π

−π
f (x)sin(nx)dx +

1

2πi

∫ π

−π
f (x)cos(nx)dx (4.8)

Auch in diese Formel setzt man für Sinus und Cosinus die Euler'sche Formel ein

cn =
1

2π

∫ π

−π
f (x)

1

2
(e inx + e−inx)dx +

1

2πi

∫ π

−π
f (x)

1

2i
(e inx − e−inx)dx (4.9)

Aus dem zweiten Integral zieht man die Konstante i heraus

cn =
1

2π

∫ π

−π
f (x)

1

2
(e inx + e−inx)dx − 1

2π

∫ π

−π
f (x)

1

2
(e inx − e−inx)dx (4.10)

Zusammenfassen des Integrals ergibt

cn =
1

2π

∫ π

−π
f (x)

1

2
(e inx + e−inx)− f (x)

1

2
(e inx − e−inx)dx (4.11)

Hineinziehen des - in die zweite Klammer ergibt
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cn =
1

2π

∫ π

−π
f (x)

1

2
(e inx + e−inx) + f (x)

1

2
(−e inx + e−inx)dx (4.12)

Zusammenfassen der Klammern ergibt

cn =
1

2π

∫ π

−π
f (x)

1

2
(e inx + e−inx − e inx + e−inx)dx (4.13)

Zusammenfassen der Terme ergibt

cn =
1

2π

∫ π

−π
f (x)e−inxdx (4.14)

5 Spektrale Fourierreihe

Eine weitere Form der Darstellung der Fourierreihe, bei der man einige Eigenschaf-
ten leichter erkennen kann, ist die spektrale Form. Dabei benutzt man, dass jede
Sinusfunktion durch Verschiebung auch als Cosinusfunktion dargestellt werden kann.

Im Gegensatz zur komplexen Form der Fourierreihe vereinfacht diese Darstellung
das Rechnen nicht: Man erspart sich zwar den Parameter vor der Sinusfunktion,
bekommt dafür aber einen Verschiebeparameter in der Cosinusfunktion.

Der Vorteil dieser Darstellung ist, dass alle Funktionen mit derselben Periode zu-
sammengefasst werden. Dadurch kann man mit dieser Darstellung, beispielsweise
aus einer Audiodatei alle Töne mit einer bestimmten Frequenz herausrechnen. Das
ist zum Beispiel nützlich, wenn sich auf einer Musikkasette Störgeräusche be�nden
und man alle Geräusche abgesehen vom Musikstück heraus�ltern will (Dann muss
man nur die passenden Summanden von der Fourierreihe abziehen). Ganz leise Töne
(mit einer sehr kleinen Amplitute) kann man immer heraus�ltern: Es entsteht kein
hörbarer Unterschied aber man benötigt weniger Speicherplatz.

Auch bei anderen Wellen (zum Beispiel Lichtwellen) kann man ganz analog einzelne
Perioden gezielt heraus�ltern.
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In dieser Gra�k sind zwei Töne mit einer unterschiedlichen Periode dargestellt, die
sich gegenseitig überlagern. Mit Hilfe der Spektralform der Fourierreihe bekommt
man eine Funktionsdarstellung, bei der alle Töne mit konstanter Periode in einem
Summanden sind. (Also rote Kurve + Abweichung der blauen Kurve von der roten
Kurve). Bei allen anderen Darstellungen der Fourierreihe funktioniert das nur, wenn
die Periode aller Töne ein ganzzahliger Teil der Periode des Haupttons darstellt und
man das Koordinatensystem so verschiebt, dass die Funktion entweder Achsen- oder
Nullpunktsymmetrisch ist.

Um die spektrale Form der Fourierreihe herzuleiten, benutzt man das Additions-
theorem

cos(x + k) = cos(k)cos(x) + sin(k)sin(nx) (5.1)

Auf den nten Term der Fourierreihe angewendet bedeutet das

dncos(nx + kn) = dncos(kn)cos(nx) + dnsin(kn)sin(nx) (5.2)

Der Term vor cos(nx) entspricht dabei dem an und der Term vor sin(nx) dem bn.
Insgesamt kann man damit die spektrale Form der Fourierreihe anschreiben

f (x) =
a0
2

+
∞∑
n=1

dncos(nx + kn) (5.3)

Um alle Parameter dn und kn auszurechnen, setzt man den Parameter an mit dem
Teil der Formel 5.2. der vor cos(nx) und den Parameter bn mit dem Term vor sin(nx)
gleich. Diese zwei Gleichungen ergeben ein Gleichungssystem mit zwei unbekannten,
das man lösen kann.

an = dncos(kn) (5.4)

bn = dnsin(kn) (5.5)

Um den Term dn zu erhalten, verwendet man die Beziehung cos2(x)+ sin2(x) = 1.
Um diese Beziehung anzuwenden, muss man beide Gleichungen quadrieren und sie
zusammenzählen. Man erhält

a2n + b2n = d2
ncos

2kn + d2
n sin

2kn = d2
n (cos

2kn + sin2kn) = d2
n (5.6)

Wurzel ziehen ergibt die Beziehung

dn =
√

a2n + b2n (5.7)

Insbesondere gilt für n=0

d0 =
√
a20 + b20 (5.8)
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Da der Sinus von 0 wieder 0 ist, fällt b0 weg und man erhält

d0 =
√
a20 = a0 (5.9)

Man kann die spektrale Form der Fourierreihe somit auch ganz ohne a0 berechnen

f (x) =
d0
2

+
∞∑
n=1

dncos(nx + kn) (5.10)

Den Term kn erhält man, indem man die Gleichungen durchdividiert

an
bn

=
dncoskn
dnsinkn

= cotkn (5.11)

Man kann die Gleichungen auch in der entgegengesetzten Reihenfolge durchdividie-
ren und erhält damit eine andere Formel die zum selben Ergebnis führt

bn
an

=
dnsinkn
dncoskn

= tankn (5.12)

Umformen nach kn führt zur Formel

kn = arccot
an
bn

= arctan
bn
an

(5.13)

6 Fouriertransformation

Die Zerlegung in unterschiedliche Töne mit Hilfe der Spektralzerlegung funktioniert
nur für periodische Töne. Oft ist es aber so, dass sich die Tonhöhe ständig ändert.
In dem Fall muss man die Periode ∞ verwenden.

Im Gegensatz zu endlichen Perioden (bei denen man die Funktionen mit den Pe-
rioden L, 2L, 3L und so weiter addieren kann), sind in einer Funktion mit einer
unendlichen Periode alle Perioden erhalten. Das hat den Vorteil, dass man nicht in
die Spektraldarstellung wechseln muss, um Töne mit allen Perioden herauszu�ltern.

Der Nachteil ist, dass man nicht nur über unendlich viele, sondern auch über un-
endlich nah beieinanderliegende Funktionen integrieren muss. Statt der Serie von
Konstanten cn muss man daher eine kontinuierliche Funktion c(n), die jeder Peri-
ode eine Amplitute zuordnet verwenden. Statt der Summe muss man ein Integral
verwenden (das entspricht der Fläche unter der Kurve, also der Summe aller Funk-
tionshöhen).

Die Formel 4.7. verändert sich mit diesen Änderungen zu

f (x) =

∫ ∞
−∞

c(n)e inxdn (6.1)
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Die Funktion c(n) verändert sich im Vergleich zu der Serie von Konstanten cn eben-
falls: Da die Periode unendlich lang (statt 2π) ist, verändert sich das Intervall über
das integriert wird: Statt zwischen −π und π muss man zwischen −∞ und ∞ in-
tegrieren.

Das Hauptproblem ist jedoch der Vorfaktor 1
π , der sich daraus herleitet, dass man

durch die Hälfte der Periode dividiert. Dieser würde zu 1
∞ = 0 werden, sodass alle

Summanden 0 werden.

Die Lösung für das Problem ist, dass man den Vorfaktor willkürlich de�niert und
damit die Änderung der Fouriertransformation in Kauf nimmt. Nachdem man den
gewünschten Ton herausge�ltert hat, muss man die Fouriertransformation wieder
rückgängig machen, um die ursprüngliche Funktion ohne den Störton zu erhalten.
Diesen Vorgang nennt man Rücktransformation.

Der Vorfaktor ist in unterschiedlichen Quellen unterschiedlich de�niert. Wenn man
den Vorfaktor 1

2π de�niert, hat die Rücktransformation, dieselbe Form wie die Fou-
riertransformation. Um das ausnutzen setzt man diesen Vorfaktor ein:

c(n) =
1

2π

∫ ∞
−∞

f (x)e−inxdx (6.2)

Man kann die Formel weiter vereinfachen, indem man die Wurzel aus dem Vorfaktor
aus jedem cn herauszieht. Da der Vorfaktor konstant ist, kann man ihn auch vor
das Integral stellen und erhält damit zwei sehr ähnliche Gleichungen

f (x) =
1√
2π

∫ ∞
−∞

c(n)e inxdn (6.3)

c(n) =
1√
2π

∫ ∞
−∞

f (x)e−inxdx (6.4)

Möchte man alle Töne in einem bestimmten Frequenzintervall [a,b] eliminieren (zum
Beispiel weil sich in dem Frequenzintervall ein Störgeräusch be�ndet), setzt man die
Amplitude c(n) für diese n gleich 0. Damit ändert sich Formel 6.3. zu

f (x) =
1√
2π

(

∫ a

−∞
c(n)e inxdn +

∫ ∞
b

c(n)e inxdn) (6.5)

Das Ergebnis muss man mit den Formeln 6.3. und 6.4. wieder rücktransformieren.
Natürlich kann man auch mehrere Frequenzintervalle auf einmal eliminieren, indem
man mehrere Intervalle ausnimmt.

Möchte man alle Töne in einem bestimmten Amplitudenintervall eliminieren (zum
Beispiel weil man ganz leise Töne eliminiert um Speicherplatz zu sparen), muss
man mit der Umkehrfunktion c−1(n) berechnen, in welchen Frequenzintervallen die
Amplitude in dem Intervall ist. Anschlieÿend nimmt man diese Frequenzintervalle
wie bei Formel 6.5. aus und führt die Rücktransformation durch.

Alle Angaben in diesem Skriptum sind ohne Gewähr. Jedes Feedback hilft, die vor-

liegenden und künftigen Skripten zu verbessern.
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7 Übungsaufgaben

1. Entwickle die Funktion 2sin(x)cos(x) in eine Fourierreihe
2. Entwickle die Funktion

f (x) =

{
1 2nπ < x < π + 2nπ
−1 −π + 2nπ < x < 2nπ

(7.1)

in einer Fourierreihe
3. Entwickle die Funktion

f (x) =

{
n 2nπ < x < π + 2nπ
0 −π + 2nπ < x < 2nπ

(7.2)

in einer Fourierreihe
4. Entwickle die Funktion aus Aufgabe 1 in eine spektrale Fourierreihe 5. Entwickle
die Funktion aus Aufgabe 2 in eine spektrale Fourierreihe
6. Entwickle die Funktion aus Aufgabe 3 in eine spektrale Fourierreihe
7. Berechne die Fouriertransformation der Funktion

f (x) =

{
ine inx 0 < x < 1
0 sonst

(7.3)

und eliminiere alle Töne, die sich nicht im Frequenzintervall [-1,1] be�nden

Aufgabe 1

Da die Funktion nur aus Sinus- und Cosinusfunktionen besteht, ist das Entwickeln
in einer Fourierreihe nicht notwendig und man kann die Aufgabe einfacher durch
Anwenden eines Addionstheorems lösen:

sin(x + y) = sin(x)cos(y) + sin(y)cos(x) (7.4)

Durch Einsetzen von x = y erhält man auf der rechten Seite die Funktion aus der
Angabe und auf der linken Seite die zugehörige Fourierreihe

sin(2x) = 2sin(x)cos(x) (7.5)

Aufgabe 2

Da die Funktion Nullpunktsymmetrisch ist, muss man nur die Terme bn berechnen
(alle Terme mit an fallen sowieso weg).

bn =
1

π

∫ π

−π
f (x)sin(nx)dx (7.6)

Aufteilen des Integrals in zwei Flächen:

bn =
1

π
(

∫ 0

−π
f (x)sin(nx)dx +

∫ π

0

f (x)sin(nx)dx) (7.7)

Das erste Integral deckt die Stellen ab, bei denen f(x)=-1 gilt, das zweite Integral
die Stellen, bei denen f(x)=1 gilt:
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bn =
1

π
(

∫ 0

−π
−sin(nx)dx +

∫ π

0

sin(nx)dx) (7.8)

Berechnen der Stammfunktion mit der Umkehrung der inneren Ableitung (
∫
f (Cx) =

1
C F (Cx)) und Herausziehen des Faktors 1

n aus dem Integral:

bn =
1

nπ
([cos(nx)]0−π + [−cos(nx)]π0 ) (7.9)

Durch Einsetzen von cos(0)=1 erhält man:

bn =
1

nπ
(1− cos(−nπ)− cos(nπ) + 1) (7.10)

Wegen der Nullpunktsymmetrie der Cosinusfunktion gilt cos(nπ) = −cos(−nπ)

bn =
1

nπ
(1 + cos(nπ)− cos(nπ) + 1) (7.11)

Die Cosinusfunktionen kürzen sich weg, sodass in der Klammer -2 überbleibt:

bn = − 2

nπ
(7.12)

Einsetzen von 0 für alle a0 und an und − 2
nπ für alle bn führt auf die Fourierreihe

− 2

nπ

∞∑
n=1

cos(nx) (7.13)

Aufgabe 3

Da diese Funktion weder Nullpunkt- noch Achsensymmetrisch ist und die Fourier-
reihe nicht reell sein muss, kann man die komplexe Fourierreihe verwenden

cn =
1

2π

∫ π

−π
f (x)e inxdx (7.14)

Aufteilen des Integrals in zwei Flächen:

cn =
1

2π
(

∫ 0

−π
f (x)e inxdx +

∫ π

0

f (x)e inxdx) (7.15)

Das erste Integral deckt die Stellen ab, bei denen f(x)=0 gilt und fällt damit weg,
das zweite Integral die Stellen, bei denen f(x)=n gilt:

cn =
1

2π

∫ π

0

ne inxdx (7.16)

Berechnung der Stammfunktion mit der Umkehrung der inneren Ableitung (
∫
f (Cx) =

1
C F (Cx)) und Herausziehen des Faktors 1

i aus dem Integral

cn =
1

2πi
[e inx ]π0 (7.17)

Durch Einsetzen von e0 = 1 erhält man:
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cn =
1

2πi
(e inπ − 1) (7.18)

Da e inπ für alle geraden n gleich 1 ist, fällt jeder zweite Term weg. Für alle ungeraden
n ist cn = − 1

iπ (Polardarstellung der komplexen Zahlen). Um die Fourierreihe mit
einer Summe darzustellen verwendet man die Summationskonstante m = 2n - 1,
die nur bei den ungeraden Zahlen vorbeikommt.

− 1

iπ

∞∑
m=1

e imx (7.19)

Aufgabe 4

Da die Cosinusfunktion genau so wie die Sinusfunktion aussieht, nur um 2π ver-
schoben, erhält man die spektrale Fourierreihe indem man sin(φ) = cos(φ+ 2π) in
der normalen Fourierreihe einsetzt. In der Fourierreihe aus Beispiel 1 gilt φ = 2x ,
somit ist das Ergebnis:

cos(2x + 2π) (7.20)

Aufgabe 5

In der spektralen Fourierreihe werden im Gegensatz zur normalen Fourierreihe alle
Sinusfunktionen durch Cosinusfunktionen dargestellt. Da in der Fourierreihe aus
Aufgabe 4 ausschlieÿlich Cosinusfunktionen auftreten ist die spektrale Fourierreihe
gleich der normalen Fourierreihe aus Aufgabe 2:

− 2

nπ

∞∑
n=1

cos(nx) (7.21)

Aufgabe 6

Die Fourierreihe aus Aufgabe 3 lautet:

− 1

iπ

∞∑
m=1

e imx (7.22)

Um auf die Terme am und bm zu kommen (das genügt, weil die Reihenmitglieder da-
zwischen wie oben gezeigt wegfallen) muss man die komplexe Fourierreihe mit Hilfe
der Euler'schen Formel e iφ = cos(φ) + isin(φ) mit φ = mx zu einer gewöhnlichen
Fourierreihe umformen:

− 1

iπ

∞∑
m=1

(cos(mx) + isin(mx)) (7.23)

Jetzt könnte man auf die Idee kommen, den Term sin(mx) durch cos(mx + 2π)
zu ersetzen. Das ist aber nicht sinnvoll, weil man dann kein einheitliches km und
somit erst bei jeder Frequenz zwei unterschiedliche Schwingungen hat. Stattdessen
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muss man die Terme am und bm mit den oben hergeleiteten Formeln zu dm und km
umformen.

Der Term vor dem Cosinus ist bm = 1
iπ , der Term vor dem Sinus ist das ifache

davon, also am = i
iπ = 1

π . Einsetzen in die Formel dm =
√

a2m + b2m ergibt:

d2
m =

√
− 1

π2
+

1

π2
= 0 (7.24)

Da dm vor allen verbleibenden Termen steht, braucht man km nicht mehr berechnen,
weil sich die Terme durch Multiplikation mit 0 sowieso wegkürzen.

Aufgabe 7

c(n) =
1√
2π

∫ ∞
−∞

f (x)e−inxdx (7.25)

Da die Funktion auÿerhalb von [0,1]=0 ist, kann man diesen Teil beim Integrieren
weglassen, innerhalb des Intervalls ist f (x) = 2πin

c(n) =
1√
2π

∫ 1

0

2πine−inxdx (7.26)

Herausziehen der Konstanten
√
2π aus dem Integral und Kürzen mit Hilfe der Be-

ziehung 2π =
√
2π
√
2π, führt dazu, dass nur noch ine−inx im Integral steht:

c(n) =
√
2π

∫ 1

0

ine−inxdx (7.27)

Berechnen der Stammfunktion mit der Umkehrung der inneren Ableitung (
∫
f (Cx) =

1
C F (Cx)) und kürzen des Vorfaktors - 1in mit in zu -1:

c(n) =
√
2π[−e−inx ]10 (7.28)

Einsetzen der Grenzen und Ausnutzen der Beziehung e0 = 1 führt zum Ergebnis:

c(n) =
√
2π(−e−in + 1) (7.29)

Umalle Frequenzen, deren Amplituten nicht im Intervall [-1,1] liegen, zu eliminieren,
muss man von -1 bis 1 integrieren:

f (x) =
1√
2π

∫ 1

−1

√
2π(−e−in + 1)e inxdn (7.30)

Der Vorfaktor
√
2π ist nicht von n abhängig und kann vor das Integral gezogen

werden, wo er sich mit dem Vorfaktor 1√
2π

wegkürzt. Die Klammer mit den Expo-
nentialfunktionen kann ausmultipliziert werden.

f (x) =

∫ 1

−1
−e in(x−1) + e inxdn (7.31)

Berechnen der Stammfunktion mit der Umkehrung der inneren Ableitung (
∫
f (Cx) =

1
C F (Cx)) und Herausziehen des Faktors 1

in aus beiden Termen:

16



f (x) = [
1

in
(−e in(x−1) + e inx)]1−1 (7.32)

Einsetzen der Grenzen und Ausnützen der Beziehungen 1
i = −i und

1
−i = i ergibt:

f (x) = −i(e i(x−1) + e ix)− i(e−i(x−1) + e−ix) (7.33)

Herausziehen von -i und umordnen der Terme ergibt

f (x) = −i(e i(x−1) + e−i(x−1) + e−ix + e ix) (7.34)

Benutzen der Euler'schen Formel cos(φ) = 1
2 (e

iφ+e−iφ) für φ = x−1 bzw. φ = −x
ergibt

f (x) = 2cos(x − 1) + 2cos(−x) (7.35)
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