Fourierreihen

Fourierreihen dienen zur Darstellung periodischer Funktionen.

Als Basis dafiir dienen zwei Funktionen: Die Sinus- und die Cosinusfunktion. Durch
Manipulation mit einer Konstanten C kann man die Eigenschaften auf vielfaltige
Weise verdndern:

e Verschiebung entlang der x-Achse um C: sin(x+C)
e Verschiebung entlang der y-Achse um C: sin(x)+C
e Stauchung der Periode um C: sin(Cx)

e Streckung der Amplitude um C: Csin(x)

Insbesondere kann man durch Einfiihrung mehrerer Konstanten mehrere Eigenschaf-
ten dndern. Beispielsweise ist bei der Funktion Ksin(Cx) die Amplitute um den Fak-
tor K gestreckt und die Periode um den Faktor C gestaucht.

Durch Addition mehrerer manipulierter Sinus- und Cosinusfunktionen kann man
auch sich einander iiberlagernde Schwingungen darstellen.

Abbildung 1: Die Funktion sin(x) (rot) und die Funktion 0,2sin(5x) i{iberlagern sich
zur Funktion sin(x)+0,2sin(5x) (blau).

Es gibt auch periodische Funktionen, die sich nur durch Uberlagerung von unendlich
vielen Funktionen darstellen lassen:

Eckige Funktionen: An den eckigen Stellen muss man Funktionen mit einer immer
enger werdenden Kriimmung dazuzéhlen. Erst bei unendlicher Krimmung wird die



Funktion eckig

Zum Beispiel Dreiecksfunktion

Abbildung 2: Die Funktion 1+ Zcos(%x) hat schon die richtige H5he und Periode,
an den Ecken muss man jedoch noch eine engere Kurve dazuzihlen

Abbildung 3: Die Funktion 1 + 2cos(%x) + & cos(3fx). Man erkennt, dass die
Funktion durch dazuzidhlen passender weiterer Funktionen immer enger in die Ecke
hineinkommt. Eckig wird sie erst, wenn man unendlich viele Cosinusfunktionen ad-

diert.

Unstetige Funktionen: Zum Beispiel Sdgezahnfunktion




Abbildung 4: Die Funktion 2sin(mx) — Lsin(2mx) + = sin(3mx) — 5=sin(4mx). Man
erkennt, dass die Funktion an den Unstetigkeitsstellen besonders ungenau ist. Selbst
durch dazuzihlen endlich vieler weiterer passender Funktionen wird diese Ungenau-
igkeit nie kleiner als 8,9% der Sprunghdhe. Erst bei unendlich vielen Funktionen

verschwindet diese Ungenauigkeit.

Dieses sogenannte Gibb'sche Phdnomen tritt bei allen unstetigen Funktionen auf.
Zudem ist es notwendig, dass die Funktion an den Unstetigkeitsstellen den Mittel-
wert zwischen linksseitigen Grenzwert (in der Grafik griin markiert) und rechtssei-
tigen Grenzwert (in der Grafik blau markiert) hat, weil sie sich sonst nicht einmal
durch eine unendliche Summe darstellen lassen wiirde.

Funktionen mit unendlich vielen Kriimmungen: Wenn man Funktionen mit einer
immer kiirzeren Periode addiert, werden die Krimmungen immer kleiner. Das fiihrt
zu Funktionen, bei denen man, egal wie weit man hineingezoomt hat, immer noch
weitere noch kleinere Krimmungen findet.

1 Fourierreihe mit Periode 27

Bevor man die Fourierreihe fiir alle Perioden herleitet, beginnt man mit den einfachs-
ten Fourierreihen: Jenen mit der Periode 27. Diese sind deshalb am einfachsten, weil
die Funktionen cos(x) und sin(x) bereits die Periode 27 besitzen.

Um herzuleiten, wie man eine Fourierreihe fiir Funktionen mit der Periode 27 auf-
stellt, kann man die Sinus- und die Cosinusfunktion durch Manipulation mit Unbe-
kannten so weit wie moglich Verallgemeinern um moglichst viele unterschiedliche
Funktionen darstellen zu konnen. Dannach kann man herausfinden, wie man die
dabei auftretenden Unbekannten fiir eine konkrete Funktion berechnet.

Die erste Verallgemeinerung betrifft die Periode: Sie kann auch kleiner als 27 sein,
vorausgesetzt, sie geht sich ganzzahlig in 27 aus. Beispielsweise hat eine Funktion
mit der Periode 7 auch die Periode 27, weil in dem Intervall die Periode 2 mal
durchlaufen wurde.

Somit haben auch die Funktionen cos(mx) und sin(nx) fiir alle ganzen Zahlen m,n
die Periode 27. Insbesondere erreicht man mit dieser Verallgemeinerung (durch
Einsetzen von m=0 bzw. n=0) auch die konstanten Funktionen 0 und 1, die jede
Periode, darunter auch die Periode 27 haben.

Die Amplitute und die Verschiebung entlang der y-Achse kann beliebig beeinflusst
werden, ohne die Periode zu verdndern. Somit gilt die Periode 27 fiir die Funktionen
acos(mx)-+c und bsin(nx)+k fiir jede reelle Zahl a,b,c,k. Insbesondere erreicht man
mit dieser Verallgemeinerung (durch Einsetzen von n=0) jede konstante Funktion k.

Fiir die Verschiebung entlang der x-Achse ist keine Verallgemeinerung notwen-
dig, denn es gilt laut Additionstheorem sin(x+c) = sin(c)cos(x)+cos(c)sin(x) und
cos(x+c)=cos(c)cos(x)+sin(c)sin(x). Alle Verschiebungen haben daher die Form
acos(x)+bsin(x) mit beliebigen reellen Zahlen a und b, eine Verallgemeinerung die



man auch durch Uberlagerung mehrerer Funktionen erhilt.

Dieser Verallgemeinerung wollen wir uns im nichsten Schritt widmen. Alle Funk-
tionen mit derselben Periode addieren sich zur Funktion asin(nx)+bcos(nx)+c (Es
addieren sich sowohl alle Amplituden, als auch alle Verschiebungen entlang der y-
Achse). Wenn man alle moglichen Perioden addiert, erhdlt man die allgemeinste
Form einer Fourierreihe

f(x) = i apcos(nx) + bpsin(nx) + ¢ (1.1)

n=—oo

Man muss nicht iiber negative n addieren, weil die Cosinusfunktion Nullpunktsym-
metrisch cos(-nx)=-cos(nx) und die Sinusfunktion symmetrisch beziiglich der y-
Achse sin(-nx)=sin(nx) ist. Damit werden alle Funktionen mit negativen n auch
durch Addition iiber positive n erreicht. Uber n=0 muss man auch nicht addieren,
weil man damit nur eine konstante Funktion erhilt, die bereits durch die Konstante
c einbezogen ist. Damit vereinfacht sich 1.1 zu

f(x) = f: apcos(nx) + bpsin(nx) + ¢ (1.2)

n=1

Insbesondere erhilt man dabei fiir alle Perioden, die nicht in der Funktion enthalten
sind a, = 0 bzw. b, = 0. Beispielsweise sind bei der Funktion sin(x) alle Konstanten
(abgesehen von a; = 1) gleich 0.

Um herauszufinden, wie man die Grole der Konstanten a,, b, und c berechnet,
muss man die Gleichung 1.1. so umformen, dass die jeweils anderen Konstanten

wegfallen. Um das zu erreichen, benétigt man einige Eigenschaften der Sinus- und
Cosinusfunktionen:

T

sin(nx)cos(mx) = 0 (1.6)

/_: cos(nx) = /_W sin(nx) = (1.3)

/7; cos’(nx) = /: sin?(nx) = (1.4)

/_: cos(nx)cos(mx) = /_: sin(nx)sin(mx) = 0 (15)
7 /ﬂ

/ cos(nx)sin(mx) =

—T —T

Fiir die Formeln 1.3 - 1.6 gilt m#n und m,ne N.

Wenn man die Stammfunktion von 1.2. zwischen 7 und -7 bildet fallen laut Sum-
menregel und 1.2. alle Terme abgesehen von der Konstanten ¢ weg. Man erhilt

/ﬁ F(x) = /ﬂ ¢ cm— c(—m) = —2mc (1.7)

—T —1T



Umformen nach c ergibt

=2 [ ) (1.8)

o -

Wenn man die Funktion 1.2. mit cos(nx) multipliziert und dann die Stammfunktion
zwischen 7 und -7 bildet, fallen laut Summenregel und den Formeln 1.5 - 1.6 alle
Terme abgesehen von a,cos?(nx) weg. Man erhilt

/7T f(x)cos(nx) = /7r ancos?(nx) (1.9)

—T —T

Mit Hilfe von 1.4. kann man das Integral auf der rechten Seite auflésen und erhilt

™

f(x)cos(nx) = apm (1.10)
Umformen nach a, ergibt
1 s
ap, = f/ f(x)cos(nx) (1.11)
T™J

Insbesondere erhilt man durch Einsetzen von n=0

ag = ] /7T f(x)cos(0x) = 1 /7T f(x)=2c (1.12)

T J)_n L —

Man kann daher in der Formel 1.2 statt ¢ auch 32—0 einsetzen. Damit erhdlt man die
Formel

f(x) = ? + i ancos(nx) + bysin(nx) (1.13)

n=1

Die b, erhilt man analog zu den a,, nur dass man 1.2. vor dem integrieren mit
sin(nx) multipliziert. Man erhilt

b, = L/ f(x)sin(nx) (1.14)

—T

2 Fourierreihe mit der Periode L

Wir betrachten eine Funktion, die nicht die Periode 27, sondern eine beliebige an-
dere Periode L hat. Es gilt also f(x+L)=f(x). Um die Fourierreihe dieser Funktion zu
berechnen, ist es am einfachsten, man staucht die x-Achse so, dass die Funktion die
Periode 27 hat, wendet dann die Formel 1.13. an und streckt die x-Achse danach
wieder auf die urspriingliche Form.



Zum Stauchen der x-Achse dividiert man zunachst alle x-Werte durch die Periode
der Funktion L, sodass die Funktion die Periode 1 hat (f(¥+%)=f(X+1)=f(%)).
Dann multipliziert man alle Werte mit 27, sodass die Funktion die Periode 27 be-
sitzt (f(222+2m)=f(22T)).

Durch Anwenden der Formel 1.13. erhilt man die Fourierreihe im Bezugssystem der
gestauchten x-Achse. Diese streckt man wieder, indem man sie zunachst durch 27
dividiert (um die Periode 1 zu erhalten) und dann wieder mit der urspriinglichen
Periode L multipliziert.

3 Rechentipps

Bevor man anfingt, die Fourierreihe zu berechnen, sollte man sich iiberlegen, ob
das Berechnen der Fourierreihe iiberhaupt Sinn macht. Wenn die Funktion aus der
Angabe bereits nur aus Sinus- Cosinus- und konstanten Funktionen besteht, ist es
nicht nur sinnlos die Fourierreihe auszurechnen, es kommt dabei auch die selbe
Funktion heraus. (Allenfalls kann man sich damit das Additionstheorem der Sinus-
und Cosinusfunktion herleiten, aber das geht mit der Euler'schen Formel leichter).

Dann muss man sich entscheiden, ob man die Funktion nur gendhert oder ganz
exakt bendtigt. Die Fourierndherung, bei der man sich nur endlich viele a,, und b,
ausrechnen muss, ist aufgrund des Gibb’schen Phanomens nur fiir Werte, die weit
von einer Unstetigkeitsstelle entfernt sind, praktikabel. Direkt an den Sprungstellen
hilft nicht einmal das Aufstellen einer unendlich langen Fourierreihe. (Diese Punkte
muss man, sofern sie nicht den Mittelwert zwischen rechtsseitigen und linksseitigen
Grenzwert darstellen, gezielt umdefinieren).

Als nichstes iiberlegt man sich, ob die Funktion achsensymmetrisch, nullpunktsym-
metrisch oder weder noch ist. Wenn die Funktion nullpunktsymmetrisch ist, ldsst
sie sich ausschliellich durch die ebenfalls nullpunktsymmetrische Cosinusfunktion
darstellen (Man erspart sich das Berechnen der b,, weil diese immer 0 werden).
Analog ist das bei den achsensymmetrischen Funktionen, bei denen die Funktion
nur durch die ebenfalls achsensymmetrischen Sinusfunktionen dargestellt wird, und
man sich das berechnen der a, erspart.

Wenn die Funktion weder achsensymmetrisch noch nullpunktsymmetrisch ist, kann
man das Koordinatensystem so lange in x-Richtung verschieben, bis die Funktion
achsensymmetrisch ist (das ist immer in der Mitte der Periode der Fall). Dafiir setzt
man in die Funktion statt x x4c ein, wobei ¢ die Anzahl der Einheiten ist, um die
man die x-Achse verschoben hat. Nachdem man die Fourierreihe ausgerechnet hat,
muss man das Koordinatensystem zuriickschieben, indem man fiir jedes x wieder
x-C einsetzt.

Im nichsten Schritt berechnet man die notwendigen a, und b, indem man in die
Formeln 1.11 bzw. 1.14 einsetzt. Meistens ist es zweckmaRig, alle a, bzw. alle b, auf
einmal zu berechnen, indem man die Zahl n als Unbekannte einsetzt. Hiufig beno-
tigt man dabei die Formel 1.4. zum Integrieren und die Vereinfachungen sin(7n)=0
und cos(wn)=(-1)". Oft erleichtert auch das Umformen der Winkelfunktionen in
Exponentialfunktionen mit Hilfe der Euler'schen Formel das Integrieren. Eventuell



ist das Ergebnis schoner, wenn man nach der Integration aus den Exponentialfunk-
tionen wieder Winkelfunktionen berechnet.

Nachdem man alle a, und b, in die Formel 1.13 eingesetzt hat, ist man mit dem
Erstellen der Fourierreihe fertig.

4 Komplexe Fourierreihe

Mit Hilfe der Euler’schen Formel kann man sowohl die Sinus- als auch die Cosi-
nusfunktion in Form einer Exponentialfunktion darstellen. Dieser Rechentrick wurde
bereits erwdhnt, um sich das Integrieren zu erleichtern.

Manchmal ist es auch sinnvoll, die Formel 1.13., mit der man die Fourierreihe be-
rechnet, gleich zu Beginn mit Exponentialfunktionen anzuschreiben. Das hat den
Vorteil, dass es nur noch eine Serie von Parametern (c,) gibt. Allerdings stellt sich
heraus, dass man diese von —oo bis co summieren muss.

Mit welcher Fourierreihe das Rechnen leichter ist, hangt vom Beispiel ab, ist jedoch
meist nicht erkennbar. Bei geraden oder ungeraden Funktionen ist es immer von
Vorteil wenn man zunichst mit der reellen Fourierreihe losrechnet, weil man dann
sowieso nur eine Serie von Parametern ausrechnen muss. Auch wenn man einer reel-
len Fourierreihe interessiert ist, ist das Rechnen mit der reellen Fourierreihe leichter,
weil man sich dann das Zuriickrechnen mit der Euler’'schen Formel erspart.

Um die Komplexe Fourierreihe zu berechnen, setzt man fiir sin(nx) und cos(nx) in
der reellen Fourierreihe die Euler'sche Formel ein

ﬁ(einx _ efinx) (41)

o) 3 ]
f 770 '7 mx —inx
> +Z +e ™)+ o

2@

n—=

Teilen der Summe ergibt

o0 oo o0
by

f(X) _ % + Zl %einx + Zl %e—inx + Zl /nx + Z 2[ —lnx (42)

In der zweiten und vierten Summe definiert man den Summationsindex so um, dass
er genau das Negative von sich selbst ist. Damit erreicht man, dass alle Exponenti-
alfunktionen einen positiven Exponenten haben. Da a, achsensymmetrisch ist, gilt
an = a_, und da b, nullpunktsymmetrisch ist, gilt b,=—b,. Damit vereinfacht sich
4.2. zu

f(X) — %_i_z%einx_’_ i %einx_'_z mx+ Z inx) (43)
n=1 n=-—1 n=1 n——l

Die ersten zwei Summen beziehen sich auf dieselbe Funktion. Man kann diese zu-
sammen mit dem ersten Term (der wie durch Einsetzen leicht ersichtlich der Funk-
tion bei n=0 entspricht) zu einer Summe von —oo bis co zusammengefasst werden.



Auch die letzten beiden Summen kdnnen zu einer Summe von —oo bis 0o zusam-
mengefasst werden, denn der Term bei n=0 fillt weg. Damit vereinfacht sich 4.3.
zu

o0

) < b .
)= Y et 3 le™ (4.4)

n=—oo

Die beiden verbleibenden Summen lassen sich ihrerseits wieder zusammenfassen

f(x) = Z (% + %)einx (4.5)

n=—oQ

Man definiert eine neue Serie von Konstanten

a, b,
Ch = <+ —
2 2i

Damit kann man die Fourierreihe noch kiirzer anschreiben

Fx)= Y cae™ (4.7)

n=—0o0

Um die GroBe der ¢, zu berechnen, setzt man die Formel fiir a, (1.11.) und die
Formel fiir b, (1.14.) in 4.6. ein. Damit erhalt man die Formel

1 ™ ™

f(x)sin(nx)dx + QL f(x)cos(nx)dx (4.8)

Ch = —
2 J_ . )

Auch in diese Formel setzt man fiir Sinus und Cosinus die Euler'sche Formel ein

1 s
Ch = —
2 J_ .

1, . ; 1 g 1 . .
f'(X)E(eIHX _|_ e*lnX)dX_F %/ f'(X)Z(eIﬂX _ e*II‘IX)dX (49)

Aus dem zweiten Integral zieht man die Konstante i heraus

1 " 1 inx —inx 1 N 1 inx —inx
=5 | A5+ e — o [ A0 - e de (@410)

—T

Zusammenfassen des Integrals ergibt

1 [™ 1 . . 1 . )
f(x)=(e"™ +e ™) — f(x)a(e’”x — e "™)dx (4.11)

Cp 5

:§_Tr

Hineinziehen des - in die zweite Klammer ergibt



1 (7 1

) . 1 ) )
Cn F)5 (€ + &™) + F(x)5 (—e™ + e ™)ax (4.12)

:g .

Zusammenfassen der Klammern ergibt

1 (7 1, . . . .
= | FOO5(e7 e — e e )ax (4.13)

Zusammenfassen der Terme ergibt

1 ™

:Z_Tr

Cn f(x)e™ ™ dx (4.14)

5 Spektrale Fourierreihe

Eine weitere Form der Darstellung der Fourierreihe, bei der man einige Eigenschaf-
ten leichter erkennen kann, ist die spektrale Form. Dabei benutzt man, dass jede
Sinusfunktion durch Verschiebung auch als Cosinusfunktion dargestellt werden kann.

Im Gegensatz zur komplexen Form der Fourierreihe vereinfacht diese Darstellung
das Rechnen nicht: Man erspart sich zwar den Parameter vor der Sinusfunktion,
bekommt dafiir aber einen Verschiebeparameter in der Cosinusfunktion.

Der Vorteil dieser Darstellung ist, dass alle Funktionen mit derselben Periode zu-
sammengefasst werden. Dadurch kann man mit dieser Darstellung, beispielsweise
aus einer Audiodatei alle Téne mit einer bestimmten Frequenz herausrechnen. Das
ist zum Beispiel niitzlich, wenn sich auf einer Musikkasette Storgerdusche befinden
und man alle Gerdusche abgesehen vom Musikstiick herausfiltern will (Dann muss
man nur die passenden Summanden von der Fourierreihe abziehen). Ganz leise Téne
(mit einer sehr kleinen Amplitute) kann man immer herausfiltern: Es entsteht kein
horbarer Unterschied aber man benétigt weniger Speicherplatz.

Auch bei anderen Wellen (zum Beispiel Lichtwellen) kann man ganz analog einzelne
Perioden gezielt herausfiltern.




In dieser Grafik sind zwei Tone mit einer unterschiedlichen Periode dargestellt, die
sich gegenseitig tiberlagern. Mit Hilfe der Spektralform der Fourierreihe bekommt
man eine Funktionsdarstellung, bei der alle Téne mit konstanter Periode in einem
Summanden sind. (Also rote Kurve + Abweichung der blauen Kurve von der roten
Kurve). Bei allen anderen Darstellungen der Fourierreihe funktioniert das nur, wenn
die Periode aller Téne ein ganzzahliger Teil der Periode des Haupttons darstellt und
man das Koordinatensystem so verschiebt, dass die Funktion entweder Achsen- oder
Nullpunktsymmetrisch ist.

Um die spektrale Form der Fourierreihe herzuleiten, benutzt man das Additions-
theorem

cos(x + k) = cos(k)cos(x) + sin(k)sin(nx) (5.1)

Auf den nten Term der Fourierreihe angewendet bedeutet das

dncos(nx + k,) = dncos(kn)cos(nx) + dnsin(kp)sin(nx) (5.2)

Der Term vor cos(nx) entspricht dabei dem a, und der Term vor sin(nx) dem b,,.
Insgesamt kann man damit die spektrale Form der Fourierreihe anschreiben

f(x)= % + i dncos(nx + kp) (5.3)

n=1

Um alle Parameter d,, und k,, auszurechnen, setzt man den Parameter a, mit dem
Teil der Formel 5.2. der vor cos(nx) und den Parameter b, mit dem Term vor sin(nx)
gleich. Diese zwei Gleichungen ergeben ein Gleichungssystem mit zwei unbekannten,
das man [6sen kann.

a, = dycos(k,) (5.4)
by = dysin(k) (5.5)
Um den Term d, zu erhalten, verwendet man die Beziehung cos?(x) + sin?(x) = 1.

Um diese Beziehung anzuwenden, muss man beide Gleichungen quadrieren und sie
zusammenzahlen. Man erhilt

2> + b2 = d?cos’k, + d?sin’k, = d*(cos®k, + sin*k,) = d? (5.6)

Wourzel ziehen ergibt die Beziehung

do = /2 + B2 (57)

Insbesondere gilt fiir n=0

dy = \/a8+b§ (58)
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Da der Sinus von 0 wieder 0 ist, fallt by weg und man erhilt

Man kann die spektrale Form der Fourierreihe somit auch ganz ohne ay berechnen

f(x) = % + Z dncos(nx + k) (5.10)
n=1

Den Term k, erhdlt man, indem man die Gleichungen durchdividiert

an d,cosk,

b,  d,sink,

cotk, (5.11)

Man kann die Gleichungen auch in der entgegengesetzten Reihenfolge durchdividie-
ren und erhdlt damit eine andere Formel die zum selben Ergebnis fiihrt

b, d,sink,
— = = kn 12
an d,cosk, tan (5.12)
Umformen nach k, fiihrt zur Formel
n bn
kn, = arccot 2 — arctana— (5.13)

6 Fouriertransformation

Die Zerlegung in unterschiedliche Téne mit Hilfe der Spektralzerlegung funktioniert
nur fiir periodische Téne. Oft ist es aber so, dass sich die Tonhohe standig dndert.
In dem Fall muss man die Periode oo verwenden.

Im Gegensatz zu endlichen Perioden (bei denen man die Funktionen mit den Pe-
rioden L, 2L, 3L und so weiter addieren kann), sind in einer Funktion mit einer
unendlichen Periode alle Perioden erhalten. Das hat den Vorteil, dass man nicht in
die Spektraldarstellung wechseln muss, um Tdne mit allen Perioden herauszufiltern.

Der Nachteil ist, dass man nicht nur Gber unendlich viele, sondern auch uber un-
endlich nah beieinanderliegende Funktionen integrieren muss. Statt der Serie von
Konstanten ¢, muss man daher eine kontinuierliche Funktion c(n), die jeder Peri-
ode eine Amplitute zuordnet verwenden. Statt der Summe muss man ein Integral
verwenden (das entspricht der Fliche unter der Kurve, also der Summe aller Funk-
tionshohen).

Die Formel 4.7. verdndert sich mit diesen Anderungen zu

f(x) = /00 c(n)e™dn (6.1)

— 00
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Die Funktion c(n) verdndert sich im Vergleich zu der Serie von Konstanten ¢, eben-
falls: Da die Periode unendlich lang (statt 27) ist, verdndert sich das Intervall {iber
das integriert wird: Statt zwischen —7 und m muss man zwischen —co und oo in-
tegrieren.

Das Hauptproblem ist jedoch der Vorfaktor % der sich daraus herleitet, dass man
durch die Halfte der Periode dividiert. Dieser wiirde zu % = 0 werden, sodass alle
Summanden 0 werden.

Die Losung fiir das Problem ist, dass man den Vorfaktor willkiirlich definiert und
damit die Anderung der Fouriertransformation in Kauf nimmt. Nachdem man den
gewiinschten Ton herausgefiltert hat, muss man die Fouriertransformation wieder
riickgangig machen, um die urspriingliche Funktion ohne den Stérton zu erhalten.
Diesen Vorgang nennt man Riicktransformation.

Der Vorfaktor ist in unterschiedlichen Quellen unterschiedlich definiert. Wenn man
den Vorfaktor i definiert, hat die Ricktransformation, dieselbe Form wie die Fou-
riertransformation. Um das ausnutzen setzt man diesen Vorfaktor ein:

1 > :
=— [ f(x)e™d 6.2
cln) = 5= | e (62)
Man kann die Formel weiter vereinfachen, indem man die Wurzel aus dem Vorfaktor
aus jedem c, herauszieht. Da der Vorfaktor konstant ist, kann man ihn auch vor
das Integral stellen und erhdlt damit zwei sehr dhnliche Gleichungen

1 > inx

flx) = Wi [mc(n)e dn (6.3)
1 > —inx

c(n) = Wor: /700 f(x)e dx (6.4)

Mochte man alle Tone in einem bestimmten Frequenzintervall [a,b] eliminieren (zum
Beispiel weil sich in dem Frequenzintervall ein Stérgerdusch befindet), setzt man die
Amplitude c(n) fiir diese n gleich 0. Damit dndert sich Formel 6.3. zu

1 a i o0 i

f(x) = —(/ c(n)e’"xdn—l—/ c(n)e"™dn) (6.5)
V2T ) o b

Das Ergebnis muss man mit den Formeln 6.3. und 6.4. wieder riicktransformieren.

Natiirlich kann man auch mehrere Frequenzintervalle auf einmal eliminieren, indem

man mehrere Intervalle ausnimmt.

Mdochte man alle Tone in einem bestimmten Amplitudenintervall eliminieren (zum
Beispiel weil man ganz leise Tone eliminiert um Speicherplatz zu sparen), muss
man mit der Umkehrfunktion c~!(n) berechnen, in welchen Frequenzintervallen die
Amplitude in dem Intervall ist. AnschlieBend nimmt man diese Frequenzintervalle
wie bei Formel 6.5. aus und fiihrt die Riicktransformation durch.

Alle Angaben in diesem Skriptum sind ohne Gewdhr. Jedes Feedback hilft, die vor-
liegenden und kiinftigen Skripten zu verbessern.
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7 Ubungsaufgaben

1. Entwickle die Funktion 2sin(x)cos(x) in eine Fourierreihe
2. Entwickle die Funktion

_ 1 2nt < x < mw+2nm
Fx) = { -1 —7+2nm < x<2nmw (7.1)
in einer Fourierreihe
3. Entwickle die Funktion
n 2nmt < x<mw+2nmw
flx) = { 0 —m+2nm < x<2nm (7.2)

in einer Fourierreihe

4. Entwickle die Funktion aus Aufgabe 1 in eine spektrale Fourierreihe 5. Entwickle
die Funktion aus Aufgabe 2 in eine spektrale Fourierreihe

6. Entwickle die Funktion aus Aufgabe 3 in eine spektrale Fourierreihe

7. Berechne die Fouriertransformation der Funktion

ine™ 0 <x<1
flx) = { 0 sonst (7.3)

und eliminiere alle Tdne, die sich nicht im Frequenzintervall [-1,1] befinden

Aufgabe 1

Da die Funktion nur aus Sinus- und Cosinusfunktionen besteht, ist das Entwickeln
in einer Fourierreihe nicht notwendig und man kann die Aufgabe einfacher durch
Anwenden eines Addionstheorems ldsen:

sin(x + y) = sin(x)cos(y) + sin(y)cos(x) (7.4)

Durch Einsetzen von x = y erhilt man auf der rechten Seite die Funktion aus der
Angabe und auf der linken Seite die zugehdrige Fourierreihe

sin(2x) = 2sin(x)cos(x) (7.5)

Aufgabe 2

Da die Funktion Nullpunktsymmetrisch ist, muss man nur die Terme b,, berechnen
(alle Terme mit a, fallen sowieso weg).
1 [7 .
b, = — f(x)sin(nx)dx (7.6)
Aufteilen des Integrals in zwei Flachen:
1 0 ™

b, = =( f(x)sin(nx)dx —|—/ f(x)sin(nx)dx) (7.7)
- 0
Das erste Integral deckt die Stellen ab, bei denen f(x)=-1 gilt, das zweite Integral
die Stellen, bei denen f(x)=1 gilt:
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0 m
by = %(/ —sin(nx)dx —|—/O sin(nx)dx) (7.8)

—T

Berechnen der Stammfunktion mit der Umkehrung der inneren Ableitung ([ f(Cx) =
£F(Cx)) und Herausziehen des Faktors 2 aus dem Integral:

by = ——([cos(m))2., + [~cos(m)}) (7.9)

Durch Einsetzen von cos(0)=1 erh3lt man:

1
b, = n—(l — cos(—nm) — cos(nm) + 1) (7.10)
T
Wegen der Nullpunktsymmetrie der Cosinusfunktion gilt cos(nm) = —cos(—nm)
1
b, = n—(l + cos(nm) — cos(nm) + 1) (7.11)
7r
Die Cosinusfunktionen kiirzen sich weg, sodass in der Klammer -2 iiberbleibt:
2
b, =—— 7.12
n= (7.12)

Einsetzen von 0 fiir alle a9 und a, und —% fur alle b, fiihrt auf die Fourierreihe

_2 cos(nx) (7.13)

n=1

Aufgabe 3

Da diese Funktion weder Nullpunkt- noch Achsensymmetrisch ist und die Fourier-
reihe nicht reell sein muss, kann man die komplexe Fourierreihe verwenden

Ch = % /_7T f(x)e™ dx (7.14)
Aufteilen des Integrals in zwei Flachen:
1 /0 . ™ .
= / F(x)e™ dx + / F(x)e™ dx) (7.15)
27 -7 0

Das erste Integral deckt die Stellen ab, bei denen f(x)=0 gilt und fillt damit weg,
das zweite Integral die Stellen, bei denen f(x)=n gilt:

1 ™

= [ ne™dx (7.16)
27T 0

Cn

Berechnung der Stammfunktion mit der Umkehrung der inneren Ableitung ([ f(Cx) =
L+ F(Cx)) und Herausziehen des Faktors + aus dem Integral

1 .
— nxijm . 7
Cn 727_”. [e ]0 (7 1 )

Durch Einsetzen von e° = 1 erhilt man:
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1 inT
ch=——(e""-1 7.18
n 27TI( ) ( )
Da e fiir alle geraden n gleich 1 ist, fillt jeder zweite Term weg. Fiir alle ungeraden
nist ¢, = —% (Polardarstellung der komplexen Zahlen). Um die Fourierreihe mit
einer Summe darzustellen verwendet man die Summationskonstante m = 2n - 1,
die nur bei den ungeraden Zahlen vorbeikommt.

_1 D e (7.19)
1T 1

Aufgabe 4

Da die Cosinusfunktion genau so wie die Sinusfunktion aussieht, nur um 27 ver-
schoben, erhilt man die spektrale Fourierreihe indem man sin(¢) = cos(¢ + 2) in
der normalen Fourierreihe einsetzt. In der Fourierreihe aus Beispiel 1 gilt ¢ = 2x,
somit ist das Ergebnis:

cos(2x + 2) (7.20)

Aufgabe 5

In der spektralen Fourierreihe werden im Gegensatz zur normalen Fourierreihe alle
Sinusfunktionen durch Cosinusfunktionen dargestellt. Da in der Fourierreihe aus
Aufgabe 4 ausschlieBlich Cosinusfunktionen auftreten ist die spektrale Fourierreihe
gleich der normalen Fourierreihe aus Aufgabe 2:

2 oo
R 7.21
o 2 cos(nx) (7.21)
Aufgabe 6
Die Fourierreihe aus Aufgabe 3 lautet:
1 =
—=> ™ (7.22)
in =

Um auf die Terme a,,, und b, zu kommen (das geniigt, weil die Reihenmitglieder da-
zwischen wie oben gezeigt wegfallen) muss man die komplexe Fourierreihe mit Hilfe
der Euler'schen Formel e’ = cos(¢) + isin(¢) mit ¢ = mx zu einer gewdhnlichen
Fourierreihe umformen:

_ % Z(cos(mx) + isin(mx)) (7.23)

m=1

Jetzt konnte man auf die Idee kommen, den Term sin(mx) durch cos(mx + 27)
zu ersetzen. Das ist aber nicht sinnvoll, weil man dann kein einheitliches k,, und
somit erst bei jeder Frequenz zwei unterschiedliche Schwingungen hat. Stattdessen
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muss man die Terme a,, und b, mit den oben hergeleiteten Formeln zu d,, und kp,
umformen.

Der Term vor dem Cosinus ist b, = % der Term vor dem Sinus ist das ifache
davon, also a, = - = L. Einsetzen in die Formel d,, = /a2, + b2, ergibt:
1 1
2 _ _
dp=1\l-%+5=0 (7.24)

Da d,, vor allen verbleibenden Termen steht, braucht man k,,, nicht mehr berechnen,
weil sich die Terme durch Multiplikation mit O sowieso wegkiirzen.

Aufgabe 7

1 > —inx
c(n) = ez /_Oo f(x)e™"™dx (7.25)

Da die Funktion auBerhalb von [0,1]=0 ist, kann man diesen Teil beim Integrieren
weglassen, innerhalb des Intervalls ist f(x) = 2min

1t :
c(n) = E/o 2mine™ "™ dx (7.26)

Herausziehen der Konstanten 27 aus dem Integral und Kiirzen mit Hilfe der Be-
ziehung 27 = /27w+/27, fihrt dazu, dass nur noch ine™"™ im Integral steht:

c(n) = \/ﬂ/ol ine ™™ dx (7.27)

Berechnen der Stammfunktion mit der Umkehrung der inneren Ableitung ([ f(Cx) =
+F(Cx)) und kiirzen des Vorfaktors -1 mit in zu -1:

c(n) = V2r[—e ™)} (7.28)

Einsetzen der Grenzen und Ausnutzen der Beziehung e = 1 fiihrt zum Ergebnis:

c(n) = V2n(—e ™ +1) (7.29)

Umalle Frequenzen, deren Amplituten nicht im Intervall [-1,1] liegen, zu eliminieren,
muss man von -1 bis 1 integrieren:

1 ! —in inx
f(x) = E/_lm(—e +1)e™dn (7.30)

Der Vorfaktor +/27 ist nicht von n abhdngig und kann vor das Integral gezogen

werden, wo er sich mit dem Vorfaktor \/% wegkiirzt. Die Klammer mit den Expo-

nentialfunktionen kann ausmultipliziert werden.

1
f(x) = / —e"=1) e dp (7.31)
-1

Berechnen der Stammfunktion mit der Umkehrung der inneren Ableitung ([ f(Cx) =
£ F(Cx)) und Herausziehen des Faktors & aus beiden Termen:
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() = [ ("D 4 ™)L, (7.32)

Einsetzen der Grenzen und Ausniitzen der Beziehungen 3 = —i und L. = i ergibt:

f(x) = —i(e*V 4 &%) — (e ) (7.33)

Herausziehen von -i und umordnen der Terme ergibt

f(X) _ _i(ei(xfl) + efi(xfl) + efix + eix) (734)

Benutzen der Euler’schen Formel cos(¢) = 1(e'®+e7/?) fiir ¢ = x—1 bzw. ¢ = —x
ergibt

f(x) = 2cos(x — 1) + 2cos(—x) (7.35)
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