Euklidische und unitare Vektorraume

Bei euklidischen und unitdren Vektorraumen ist neben der Addition und der Multi-
plikation auch das Skalarprodukt definiert, wobei in euklidischen Rdumen nur reelle
Zahlen und in unitdren Rdumen auch komplexe Zahlen vorkommen.

Skalarprodukte kommen in vielen Formeln vor: Man kann damit die Ldnge von Vek-
toren, den Winkel zwischen Vektoren, die von Vektoren eingeschlossenen Flichen,
Volumen und Hypervolumen und vieles mehr berechnen. Die Tatsache, dass man
in euklidischen Raumen vieles berechnen kann, bezeichnet man als ,Reichheit der
Struktur”.

Die Struktur in euklidischen und unitdren Riumen ist immer mindestens genauso
reich wie in Vektorrdumen, weil die Vektorraumstruktur zur Definition eines eukli-
dischen Raumes notwendig ist. Man kann euklidische und unitdre Rdume auch als
Sonderfall eines Vektorraums auffassen.

Gleichzeitig ist die Struktur auch reicher als in normierten Rdumen (das sind Rau-
me in denen eine Norm definiert ist), weil man mit jedem Skalarprodukt eine Norm
berechnen kann (Wurzel aus dem Skalarprodukt mit sich selbst), nicht aber mit
jeder Norm ein Skalarprodukt. Euklidische und unitdre Riume sind also auch ein
Sonderfall eines normierten Vektorraums.

Der Vorteil von normierten Raumen und Vektorrdumen ist, dass man sie leichter
definieren kann, als euklidische Rdume, weil man sich dort die Definition eines spe-
ziellen Skalarprodukts erspart.

1 Euklidische Raume

1.1 Allgemeines Skalarprodukt

Wenn in einem Vektorraum normale Vektoren im Anschauungsraum dargestellt wer-
den, verwendet man normalerweise das Skalarprodukt, das ihr schon aus der Schule
kennt, sodass die Flache der Fliche im Anschauungsraum und der Winkel dem Win-
kel im Anschauungsraum entspricht. Um dieses von allgemeineren Skalarprodukten
zu unterscheiden, wird es auch als ,Standardskalarprodukt” bezeichnet.

In einem Vektorraum kénnen auch ganz andere Elemente dargestellt werden, be-
trachten wir beispielsweise den Raum der linearen Funktionen ax+b. Diese kann man
ganz willkiirlich auf verschiedene Arten ordnen. Man kann beispielsweise auf der ei-
nen Achse den Wert a und auf der anderen Achse den Wert b auftragen, sodass man
das spezielle Skalarprodukt in diesem Raum mit der Formel a4 b? berechnen kann.
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Fiir viele Anwendungen ist es jedoch sinnvoll, wenn das Skalarprodukt eine physika-
lische Bedeutung hat. Oft stellt die Flache in einem Funktionenraum beispielsweise
eine gewichtete Summe dar.

Beispiel zur gewichteten Summe

Wenn v(x) die Geschwindigkeit eines Autos auf einer Strae und B(x) das verbrauch-
te Benzin pro Geschwindigkeit pro Meter (ist von der Reibung des StraRenbelags an
der Stelle x abhéngig) angibt, ist die gewichtete Summe zwischen xs;a: und Xz
der gesamte Benzinverbrauch G auf der Strecke.

Um diesen zu berechnen, muss man v(x) und B(x) multiplizieren und erhilt damit
eine Funktion, die an jeder Stelle den Benzinverbrauch des Autos angibt (Die Ge-
schwindigkeit wurde an jeder Stelle mit dem Benzinverbrauch pro Geschwindigkeit
pro Meter gewichtet). Dann zieht man die Funktionshdhe an jeder Stelle zwischen
Xstart UNd Xzjer zusammen, indem man die Flache unter der Kurve (also das Integral
zwischen Xsta: und xzie) berechnet.

Die Formel fiir den Benzinverbrauch ist folglich

XZiel
G = v(x)B(x) (1.1)
XStart
In einem Vektorraum, in dem die Formel fiir die gewichtete Summe als Skalarprodukt
definiert ist, stellen die Funktionen v(x) und B(x) Vektoren dar, deren Schattenlan-
ge multipliziert gerade G ergibt. Bei diesem Beispiel scheint es unnétig kompliziert,
sich den Funktionenraum so zurechtzubiegen, dass der Benzinverbrauch eine gra-
fische Bedeutung hat, aber fiir kompliziertere Anwendungen ist so eine grafische
Anschauung gut, um nicht den Uberblick zu verlieren.

Wenn man wissen mochte, welche Werte man auf den Achsen eines Vektorraumes
auftragen muss, kann man sich mit Hilfe des Gram-Schmidt-Verfahrens und belie-
bigen Funktionen in dem Raum eine Orthonormalbasis ausrechnen (Erklarung siehe
Skriptum ,Gram-Schmidt-Verfahren®).

Einschrankungen des allgemeinen Skalarprodukts

Die grafische Eigenschaft des Skalarprodukts, dass es eine Multiplikation der Schat-
ten darstellt, fiihrt zu grafischen Einschrankungen:

In der folgenden Auflistung sind u,v und w Vektoren, A eine Zahl und <v|w> stellt
das Skalarprodukt dar

e (v|lv) > 0: Das Quadrat des Schattens, muss immer groRer gleich 0 sein
(Schatten mit komplexer Linge gibt es nicht).

e (vlv) = 0 wenn v = 0: Das Quadrat des Schattens auf sich selbst ist das
Quadrat der Lange. Dieses kann nur dann 0 sein, wenn die Lange selber 0 ist.

o (vlw) = (w|v): Das Produkt zweier Schatten ist kommutativ, da schon das
normale Produkt kommutativ ist
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o (Aviw) = (v|]Aw) = A{v|w): Wenn einer der Vektoren um den Faktor A
verlangert wird, wird auch sein Schatten und folglich auch das Produkt der
Schatten um den Faktor A verlangert.

o (v+ ulw) = (ulw) + (v|w): Der Schatten der Summe zweier Vektoren, ent-
spricht der Summe der Schatten (der Schatten kann auch abgezogen werden).

o (vlu+ w) = (v|w) + (u|w): Diese Einschrankung muss man nicht extra defi-
nieren, denn man kann diese mit dem Kommutativgesetz zur vorigen Aussage
umdrehen.

1.2 Strukturerhaltende Abbildungen

Eine reiche Struktur fiihrt dazu, dass es nur sehr wenige strukturerhaltende Ab-
bildungen gibt. Das erkennt man gerade bei euklidischen Vektorrdumen besonders
gut: Da man mit dem Skalarprodukt Winkel berechnen kann, diirfen sich diese nicht
verdndern. Es sind daher hochstens Drehstreckungen strukturerhaltend. Da man mit
dem Skalarprodukt auch die Norm definieren kann, diirfen die Vektoren ihre Lange
nicht dndern. Das fiihrt dazu, dass die Vektoren auch nicht mehr gestreckt oder
gestaucht werden kdnnen. Es bleiben nur noch Drehspiegelungen iber.

Reine Drehungen und Spiegelungen mit Cosinus- und Sinustermen sind noch relativ
leicht zu erkennen (Erkldrung siehe Skriptum ,Rdume und Abbildungen”). Wenn je-
doch mehrere Drehungen kombiniert werden und/oder die Sinus- und Cosinusterme
explizit ausgerechnet sind, geht das nicht so einfach.

Um herauszufinden, welche Eigenschaften die Matrizen dieser strukturerhaltenden
Abbildungen erfiillen miissen, wollen wir das Skalarprodukt als Sonderfall eines Ma-
trixprodukts auffassen. Damit man das Skalarprodukt mit den Rechenregeln einer
Matrizenmultiplikation berechnen kann, muss man den ersten Vektor als Zeilenvek-
tor und den zweiten Vektor als Spaltenvektor anschreiben.

<viw >= (v, v) (2) (1.2)

Der Zeilenvektor wird auch als Bra-Vektor <v| und der Spaltenvektor als Ket-Vektor
|w> bezeichnet. Die Idee hinter dieser Schreib- und Sprechweise ist, dass man das
Skalarprodukt aus zwei Bausteinen zusammensetzt, die zusammen ein Skalarpro-
dukt <v|w> bzw. Bra-Ket (fiir das englische Wort bracket = Baustein) bilden. Lasst
euch nicht davon verwirren, dass diese Zusammensetzung sprachlich und schriftlich
schlampig ist (das ¢ im Wort bracket wird beim Zusammensetzen verschluckt und
der Strich in der Mitte wird beim auseinanderteilen verdoppelt). Wichtig ist bei
dieser Zusammensetzung nur, dass es sich mathematisch genau zu einem Skalar-
produkt zusammenfiigt.

Damit eine Abbildung das Skalarprodukt erhilt <a|b>=<f(a)|f(b)> muss die An-
derung des Spaltenvektors genau die Anderung des Zeilenvektors ausgleichen und
umgekehrt, das heilit, wenn man die Matrix auf einen Zeilenvektor anwendet, muss
genau das inverse herauskommen, wie wenn man die Matrix auf einen Spaltenvek-
tor anwendet (f(a) = f~1(b)). Matrizen und Abbildungen fiir die das gilt, heiRen


http://www.astronomieskripten.lima-city.de/Atronomieskripten/Mathematik/RaeumeUndAbbildungen.pdf
https://www.astronomieskripten.lima-city.de/Astronomieskripten/Mathematik/RaeumeUndAbbildungen/Einfuehrung.htm

R&ume und Abbildungen Euklidische und Unitdre Riume

worthogonal®.

Die Funktion f(b) (Spaltenvektor mal Matrix) entspricht genau dem Vektor-Matrix-
Produkt. Bei der Funktion f(a) (Zeilenvektor mal Matrix) wirken die Zeilen so, wie
beim Vektor-Matrix-Produkt die Spalten. Folglich muss man bei der Matrix Zeilen-
und Spaltenindex vertauschen, damit es zu einem Vektor-Matrix-Produkt wird. Beim
Vektor ist der einzige Index nicht mehr ein Zeilenindex sondern ein Spaltenindex.

Das Vertauschen von Zeilen- und Spaltenindex bezeichnet man als ,transponieren”
bzw. AT, wobei A die Matrix ist, die transponiert wird und T die Abkiirzung fiir
transponieren. Mit dieser Schreibweise kann man als Bedingung fiir die Orthogona-
litdt einer Matrix AT = A~! angeben.

Symmetrische Abbildungen

Im Allgemeinen wirken Matrizen auf Zeilenvektoren anders als auf Spaltenvektoren.
Fiir das Skalarprodukt bedeutet das, dass ein Vektor am Anfang des Skalarpro-
dukts anders als derselbe Vektor am Ende des Skalarprodukts abgebildet wird. Das
kann natiirlich unbefriedigend sein, weil es geometrisch keinen Unterschied zwischen
Zeilen- und Spaltenvektoren gibt.

Es gibt jedoch auch Matrizen bei denen das Problem nicht auftritt: Sie wirken auf
die Zeilenvektoren genau so wie auf die Spaltenvektoren. Dafiir ist es notwendig,
dass in den Zeilen genau dieselben Eintrage, wie in den Spalten stehen, es gilt
AT = A. Diese Matrizen werden als ,symmetrisch” bezeichnet, weil die Spiegelung
entlang der Diagonale, bei der Zeilen- und Spaltenindex gleich groR sind (diese wird
als Hauptdiagonale bezeichnet) die Eintrdge nicht verdndern.

Wenn man mehrere symmetrische Matrizen multipliziert, ist die Matrix immer noch
symmetrisch. Das liegt daran, dass nach der Matrizenmultiplikation im Index ij das
Produkt der iten Zeile mit der jten Spalte steht. Im Index ji steht das Produkt der
jten Zeile mit der iten Spalte. Da in der iten Zeile dasselbe, wie in der iten Spalte
(und somit auch in der jten Zeile dasselbe wie in der jten Spalte) steht, miissen die
Eintrdge ij und ji auch nach der Matrizenmultiplikation noch gleich sein.

Drehungen und Drehspiegelungen

Drehmatrizen und Drehspiegelungen sind immer symmetrisch. Das kann man bei
Drehungen um eine Achse und Spiegelungen direkt sehen. Wenn man Drehungen
um mehrere Achsen und Spiegelungen kombiniert, entspricht das der Matrizenmul-
tiplikation dieser Drehungen, sodass die Matrix symmetrisch bleibt.

Orthogonal sind die Abbildungen im allgemeinen nicht: Da aufgrund der Symmetrie
AT = A gilt, miisste, damit die Bedingung AT = A~! stimmt, A = A1 sein und
somit AA = AA~! =1 gelten. Das stimmt zwar fiir Spiegelungen und Drehungen
um 180°, bei anderen Drehungen muss man jedoch den negativen Winkel in die
Drehmatrix einsetzen um zuriick zum Ausgangsvektor zu kommen.

Beim symmetrischen Sinus fiihrt das zu keiner Anderung, beim antisymmetrischen
Cosinus verdandern die Terme jedoch ihr Vorzeichen. Das fiihrt dazu, dass das Ska-
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larprodukt manchmal das Vorzeichen umdreht (wenn eine ungerade Anzahl von Co-
sinustermen auftritt). Das bedeutet intuitiv, dass nach einer Drehung der Schatten
nach hinten zeigen kann.

1.3 Projektionen

Mit Hilfe des Skalarprodukts kann man auch Untervektorrdume mit weniger Di-
mensionen definieren (zum Beispiel eine Linie in einer Fliche, eine Fldche in einem
Raum, eine Linie in einem Raum oder eine m-dimensionale Hyperflache in einem
n-dimensionalen Hypervolumen).

Im allgemeinen bilden Projektionen einen n-dimensionalen Raum auf einen m-dimensionalen
Unterraum ab. Bei erneuter Anwendung der Projektion bleiben alle Vektoren in-
nerhalb dieses m-dimensionalen Unterraums gleich. Ein wichtiger Spezialfall von
Projektionen sind Orthogonalprojektionen, die jeden Vektor auf seinen Schatten
abbilden.

Orthogonalprojektionen

Wenn man einen Vektor <v| mit Lange 1 und einen Vektor |w> multipliziert, erhilt
man die Ldnge des Schattens von |w> auf eine Linie in Richtung des Vektors <v|.
Multiplikation der Zahl mit |[v> (also einem Spaltenvektor, der genau die gleichen
Eintrdge wie der Zeilenvektor |v> hat) ergibt einen Vektor mit der Richtung |v>
und der Lange <v|w> (also der Lange des Schattens). Das entspricht dem auf diese
Linie projezierten Vektor.

Insgesamt kann man die Projektion des Vektors w auf die Linie v mit der Formel
[v><v|w> aufschreiben. |v><yv]| ist somit eine Matrix V, die jeden Vektor |w> auf
eine Linie, die vom Vektor v aufgespannt wird, abbildet. (Das Bilden des Matrizen-
produkts der beiden Vektoren ergibt das Tensorprodukt, weil der Spaltenvektor vor

dem Zeilenvektor steht).
W)= (4 ML (1.3)
Vo LY27 =\ wn Vi :

Wenn man die Projektionsmatrix zwei mal anwendet, dndert das nichts mehr, weil
bereits jeder Vektor w auf den Vektor v projiziert wurde, folglich gilt in Matrix-
schreibweise V2 = V bzw. in Bra-Ket-Notation |v><v|v><v|=|v><v|. In Bra-
Ket-Notation erkennt man, dass in der Mitte <v|v> (die Norm des Vektors zum
Quadrat) steht und das ist laut Voraussetzung schon 1.

Spektralzerlegung

Die Spektralzerlegung entspricht der Teilung eines Vektors in seine Komponenten.
Beispielsweise ist die Spektralzerlegung des Vektors (x,y,z) = x(1,0,0) + y(0,1,0)
+ 2(0,0,1). Bei gewdhnlichen Vektoren erscheint einem das trivial, das dndert sich
jedoch wenn in dem Vektorraum Funktionen oder andere komplexe Elemente ein-
getragen sind.
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Um so eine Spektralzerlegung zu erhalten, muss man den Vektor |w> auf jeden
der n Basisvektoren |v;> projizieren und die Projektionen addieren. Die allgemeine
Formel fiir die Spektralzerlegung lautet daher

> i >< vilw > (1.4)
i=1

2 Unitdre Raume

2.1 Komplexes Skalarprodukt

Wenn man im komplexen versucht, ein normales Skalarprodukt zu berechnen, wird
man schnell an den Einschrédnkungen (speziell daran, dass das Skalarprodukt immer
positiv ist) scheitern. Wenn man beispielsweise den Vektor (i,0) quadriert, bekommt
man den Betrag -1. Das ist natiirlich ein Problem, weil die Lange eines Vektors nicht
negativ und schon gar nicht komplex sein kann.

Man kann jetzt auf die Idee kommen, dass man die komplexen Koordinaten wie
zwei zusitzliche Koordinaten betrachtet (eine fiir den Realteil und eine fiir den
Imaginarteil). Beim Imagindrteil muss natiirlich der Faktor i wegfallen, damit das
Skalarprodukt positiv bleibt. Um das zu erreichen, kann man einen Eintrag als kom-
plex konjugiert definieren, denn -i mal i ist 1. Welchen Eintrag man als komplex
konjugiert definiert, ist egal und wird daher auch in der Literatur nicht einheitlich
gehandhabt.

Durch die Definition der komplexen Konjugation, werden zwar einige Eigenschaften
aufgeweicht (das Skalarprodukt ist nicht mehr kommutativ, sondern man erhilt
durch Vertauschen das komplex konjugierte Ergebnis und die Multiplikation mit
einer komplexen Zahl fiihrt in einer der Koordinaten zur Multiplikation des Ergebnis
mit dem komplex konjugierten) aber zumindest bleibt das reele Skalarprodukt der
Speziellfall des komplexen Skalarprodukts fiir reelle Zahlen.

2.2 Strukturerhaltende Abbildungen

Beim komplexen Skalarprodukt muss man einen der beiden Vektoren (entweder den
Zeilen- oder den Spaltenvektor) komplex konjugieren. Folglich geniigt es nicht mehr,
wenn man die Zeilen und Spalten der Matrix vertauscht, sondern man muss diese
zusatzlich komplex konjugieren. Diesen Vorgang bezeichnet man als ,adjungieren”
bzw. A", wobei A die Matrix ist, die adjungiert wird und + das Zeichen fiir adjungie-
ren. Damit eine Matrix das komplexe Skalarprodukt erhilt, muss folglich AT = A~!
gelten. Diese Matrizen bezeichnet man als unitdre Matrizen. Insbesondere ist die
reelle orthogonale Matrix ein Spezialfall der unitdren Matrix.

Es gibt auch im komplexen Matrizen, die auf Spaltenvektoren und komplex kon-
jugierte Zeilenvektoren exakt gleich wirken. Dafiir muss A™ = A gelten und man
bezeichnet diese Matrizen als ,hermitesch”. Grafisch gesehen bedeutet das, dass die
Vektoren entlang der reellen Achsen weiterhin beliebig gedreht werden diirfen. Die
komplexen Achsen miissen jedoch gleich bleiben, gespiegelt oder um genau 180°
gedreht werden. Jede andere Drehung wiirde dazu fiihren, dass sich die Eintrage
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im adjungierten Vektor anders dndern, weil dort der Vektor in die andere Richtung
gedreht werden wiirde.

2.3 Dualrdume

Dualrdume sind Rdume die Elemente eines Vektorraumes auf komplexe Zahlen ab-
bilden. Betrachten wir beispielsweise den Dualraum der den Vektor v= G) auf die
Zahl 2 abbildet.

(1) ) =2 (2.1)

Dann sind in dem Raum alle Vektoren enthalten, fiir die gilt wy + wy, = 2. An-
schaulich betrachtet, sind das alle Vektoren, deren Schatten auf den Vektor v die
Lange v/2 hat. Wenn man einen Strich zeichnet, der /2 Einheiten vom Ursprung
des Vektors v entfernt im rechten Winkel auf den Vektor v steht (Lichtstrahl, der
das Ende des Schattens erzeugt), enden alle Vektoren des Dualraums, die beim
Ursprung des Vektors v beginnen bei diesem Strich und alle Vektoren, die beim
Ursprung des Vektors v beginnen und beim Strich enden, sind im Dualraum.

(-1.3)

(2,0)
(3.-1)

Dass der Strich genau beim Ende des Vektors v ist, liegt daran, dass der Vektor v
selbst zufilligerweise auch im Dualraum liegt (Das Quadrat der Linge des Vektors
ist ebenfalls 2).

Vollkommen analog kann man den Dualraum mit einem abstrakten Skalarprodukt
berechnen. Betrachtet man beispielsweise alle Funktionen, die die Funktion f(x)=1

mit dem Skalarprodukt f_ll f(x)g(x)dx auf die Zahl 2 abbilden

1
/ g(x)dx =1 (2.2)
—1
Dann sind im Dualraum alle Funktionen enthalten, die zwischen den Werten -1 und
1 eine Fliche mit dem Flacheninhalt 1 unter der Kurve haben.

Der Dualraum des Dualraums ist der Bidualraum. Da das reelle Skalarprodukt kom-
mutativ ist, und im komplexen einer der beiden Beitrage komplex konjugiert wird,
ist das komplexe Skalarprodukt hermitesch (das heift, durch Vertauschen wird das
Ergebnis komplex konjugiert). Folglich fiihrt der Bidualraum zum komplex konju-
gierten des urspriinglichen Vektors zuriick.
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3 Unendlichdimensionale Raume

Unendlichdimensionale Rdume sind R3ume, die von unendlich vielen Basisvektoren
aufgespannt werden. Das heifit nicht zwangslaufig, dass es darin Elemente gibt, die
von unendlich vielen Basisvektoren aufgespannt werden und somit zu einer unend-
lich langen Spektralzerlegung fiihren.

Betrachten wir beispielsweise den Raum der endlich langen Reihen, wobei die Ba-
sisvektoren die Reihen mit einem Index 1 und sonst lauter Indizes 0 sind. In diesem
Raum kann jedes Element (z.B. die Reihe 1,2,3) durch eine endliche Spektralzerle-
gung dargestellt werden, namlich fiir jedes Element der endlich langen Reihe eine
Reihe in der dieses Element 1 und die anderen 0 sind mal der GroRe des Elements (in
unserem Beispiel ergibt 1 x 1,0,0 + 2x 0,1,0 + 3 x 0,0,1 genau die Reihe 1,2,3). Da
die Reihen in diesem Raum beliebig lang sein kdnnen, gibt es jedoch keine Menge
von Basisvektoren, die alle Elemente erreichen.

Noch komplizierter sind Raume, in denen selbst die Elemente nicht durch eine endli-
che Spektralzerlegung dargestellt werden, beispielsweise die Menge der unendlichen
Reihen. In diesem Raum kann jedes Element durch eine unendlich lange Spektral-
zerlegung dargestellt werden (z.B. das Element 1,2,3,... durch 1 x 1,0,0,... + 2 x
0,1,0... + 3x0,0,1,...4...). Immerhin kann man sie jedoch noch in einzelne, wenn
auch unendlich viele, Dimensionen separieren. Deshalb nennt man sie separable Riu-
me.

Wenn die Anzahl der Dimensionen jedoch iiberabzidhlbar unendlich wird, funktio-
niert das nicht mehr. Betrachten wir beispielsweise den Raum aller Funktionen. In
diesem Raum kann man die Basis noch immer dhnlich wie bei den Reihen definieren
(Jede Basisfunktion ist an einer Stelle 1 und an allen anderen Stellen 0). Wenn man
die Spektralzerlegung aufschreiben mdchte, hat man jedoch schon das Problem, wo
man anfangen soll: Wenn man mit der Funktion, die an der Stelle 1 1 ist anfingt,
tiberspringt man die Funktion, die an der Stelle 0,1 1 ist. Wenn man mit der Funk-
tion, die an der Stelle 0,1 1 ist, anfangt, tiberspringt man die Funktion, die an der
Stelle 0,01 1 ist und so weiter. Bei jeder weiteren Stelle hat man das Problem erneut.

Was schon geht, ist, dass man die Summe unendlich stark verdichtet, so dass sie zu
einem Integral wird. Die Funktion wiirde dann zum Integral {iber die Funktion 1 (was
der Aufsummierung eines Peaks mit Hohe 1 an jeder Stelle entspricht) und zwar df(x)
(das bedeutet, dass jede Stelle mit dem jeweiligen Funktionswert multipliziert wird).
J 1df(x) ist fiir jede beliebige Funktion f(x) wodurch das Ergebnis der Spektralzer-
legung wieder stimmt. Das Integral iiber eine andere Zahl entsprache Basisvektoren
mit einer anderen Linge und das Integral iiber eine Funktion g(x) entsprdche un-
terschiedlich langen Basisvektoren, wobei die Funktionswerte der Funktion g(x) die
Lange des Basisvektors mit Peak an dieser Stelle angibt. Da man die Basisvektoren
mit einer dementsprechend anderen Zahl multipliziert, wird nach d% integriert.

3.1 Operatoren

Operatoren sind das analogon zu linearen Abbildungen. Allerdings kann man sie im
Gegensatz zu linearen Abbildungen nicht mehr unbedingt mit Matrizen (zumindest
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nicht mit endlichdimensionalen) darstellen.

Bei seperablen Rdumen kann man sich noch mit unendlichgroBen Matrizen weiter-
helfen. Betrachten wir beispielsweise auf dem seperablen Raum der unendlichlangen
Reihen einen Operator, der von jeder Stelle die vorige Stelle abzieht, so kann man
das mit der Matrix

1 0 O
-1 1 0
0 -1 1 (3.1)

darstellen.

Wenn man das jedoch verallgemeinert, und auf den Raum der Funktionen den Ab-
leitungsoperator anwendet, geht das nicht mehr, weil dann die Matrixeintrdge auch
unendlich dicht beieinander stehen miissten. Dennoch ist der Operator weiterhin
linear (wenn zwei Funktionen addiert oder multipliziert werden, werden auch ihre
Steigungen addiert bzw. multipliziert).

3.2 Operatornorm

Die Operatornorm gibt die maximale VergroBerung eines Vektors durch den Operator
an, das heilt die Lange des Vektors nach Anwendung des Operators wird durch die
Lange des Vektors vor der Anwendung dividiert und wenn das Ergebnis vom Vektor
abhdngt, nimmt man das groRtmdgliche Ergebnis

[[Ov]]

[IvI]

10105 = sup (32)

In dieser Formel steht O fiir Operator und v fiir Vektor. Das Supremum (sup) gibt
an, dass man den Vektor nehmen muss, fiir den das Ergebnis am groRten ist und
der Index op gibt an, dass es sich um die Operatornorm handelt..

Dabei ist nicht garantiert, dass die Norm immer endlich bleibt. Betrachtet man
beispielsweise den Operator, der den zweiten Vektoreintrag verdoppelt, den dritten
verdreifacht und so weiter. Dann bleibt jeder Vektoreintrag endlich, aber die Norm
wird dennoch oo-fach so groR.

Genauso kann die Norm auch den Wert oo annehmen, wenn der zweite Eintrag mit
-2, der dritte Eintrag mit -3 und so weiter multipliziert wird. Dann ist der Vektor
zwar nachher -oco-fach so lang, durch den Betrag wird der Wert aber wieder positiv.

Man bezeichnet eine Operatornorm als beschriankt, wenn die Operatornorm nicht
unendlich werden kann, das heift wenn der Operator die Linge jedes Vektors nur
um einen endlichen Faktor streckt.

Die beschriankten Operatoren sind gleichzeitig immer stetig, denn wenn man jeden
Eintrag nur um einen beliebig kleinen Wert dndert, kann man auch die Operator-
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norm beliebig wenig dndern.

Mochte man beispielsweisweise die Operatornorm nur um den Wert € dndern, zahlt

man beim ersten Eintrag 57, beim zweiten ;; beim dritten & und so weiter zum

Operator dazu. In der Norm steht dann 5 + 7 + § + ... = € mehr.

Die unbeschrankten Operatoren sind hingegen immer unstetig, denn egal wie klein
der Faktor ist, den man dazuzdhlt, durch die Multiplikation mit co wird die Norm
dadurch immer um oo groler.

Auch die beschrénkte Operatornorm hat manchmal iiberraschende Ergebnisse: Wenn
der zweite Eintrag halbiert, der dritte gedrittelt und so weiter wird, ist der Nenner
unendlichfach so groB wie der Z3hler, sodass die Norm 0 wird, obwohl die Linge
des Vektors nach Anwendung des Operators immer noch oo ist.

Ein weiterer ungewohneter Fall entsteht, wenn der erste Eintrag mit 0 und alle
anderen mit 1 multipliziert werden. Dann ist die Operatornorm ndmlich immer noch
1, weil der Eintrag im ersten Element meistens oo-fach kleiner als die restliche oo-
lange Reihe ist. Die restliche Reihe kann zwar auch konvergieren, aber dann ist der
Quotient kleiner als 1 und somit nicht das Supremum.

3.3 Isometrien

In unendlichdimensionalen Rdumen gibt es Operatoren, die zwar das Skalarprodukt
erhalten aber dennoch nicht orthogonal bzw. unitér sind. Diese Operatoren bezeich-
net man als Isometrien.

Ein Beispiel fiir eine Isometrie ist ein Operator, der eine Null als erstes Element
einfiigt

0 1 0
0 0 1 ..
A= 0 0 0 .. (3.3)

Nach dem Anwenden des Operators ist das Skalarprodukt weiterhin die Summe aller
Elemente. Allerdings gilt nicht mehr AT = A~ weil bei der inversen Abbildung das
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erste Element verloren geht

0 0 0
;|1 o0 0 ..
A=10 1 0 .. (34)

und dadurch auch eine andere Zahl im ersten Element stehen kdnnte.

4 Hilbertraume

Hilbertraume sind vollstandige unendlichdimensionale Vektorrdume mit Skalarpro-
dukt. Man kann auch unvollstindige unendlichdimensionale Vektorraume durch Hin-
zufiigen von zusatzlichen Mitgliedern zu vollstandigen Hilbertrdumen ergénzen. Die-
ses Vorgehen nennt man ,vervollstindigen®.

Um den Vorgang des Vervollstindigen zu verstehen, betrachten wir ihn zunichst
einmal in einem endlichdimensionalen Raum. Wenn dort ein Raum unvollstandig
ist (zum Beispiel weil das Element (1,1) fehlt) kann man innerhalb des Raumes
Vektoren so addieren, subtrahieren, mit einem Skalar multiplizieren, multiplizieren
oder dividieren, dass man den Raum verlésst (z.B. kann man in unserem Beispiel die
Elemente (1,0) und (0,1) addieren). Wenn der Raum vollstandig ist, kommt man
mit den im Vektorraum definierten Rechenarten nicht mehr aus dem Raum heraus.

Dabei muss man beachten, dass man manchmal auch unendlich viele Rechenschrit-
te anwenden muss, um einen unvollstindigen Raum zu verlassen. Betrachten wir
den Raum der rationalen Zahlen: Diesen kann man beispielsweise verlassen, indem
man die Stellen von 7 aufaddiert (3 + 0,1 + 0,04 + ...) und den Raum bei der
irrationalen Zahl 7 verldsst. Da 7 unendlich viele Stellen hat, musste man jedoch
unendlich viele Zahlen addieren, um den Raum zu verlassen.

Bei der Vervollstindigung muss man jede Zahl, die man durch endlich oder un-
endlich viele Rechenschritte erreicht, in die Menge aufnehmen. Zu der Menge der
rationalen Zahlen werden also alle irrationalen Zahlen dazu genommen, sodass man
auf die Menge der reellen Zahlen kommt. In endlichdimensionalen Fillen ist dieser
Vorgang sehr einfach, weil man nur entlang jeder Achse alle reellen Zahlen auftragen
und daher gar nicht wirklich unendliche Reihen addieren muss.

Bei unendlichdimensionalen Raumen kommt man nicht mehr um unendlich lange
Rechnungen zum Vervollstandigen herum und das kann bei einigen Riumen (z.B.
Funktionenrdumen) zu einigen Schwierigkeiten fiihren.

Eine Schwierigkeit ist, dass nicht alle Reihen eindeutig gegen einen Wert konver-
gieren. Zum Beispiel die unendliche Summe 1-1+1-1... konvergiert entweder gegen
0 oder gegen 1, je nachdem ob man die Summe bei einer geraden oder ungeraden
Stelle abbricht. In dem Fall muss man beide Moglichkeiten aufnehmen.

Eine andere Schwierigkeit wirkt sich speziell bei Funktionen aus: Es entstehen beim
Vervollstandigen Funktionen mit dem Integral O, die dennoch von 0 verschieden sind.
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Bei eindimensionalen Funktionen passiert das, wenn nur einzelne Werte ungleich 0
sind, sodass eine Seite der Flache unterhalb der Kurve 0 und somit der Fldcheninhalt
ebenfalls 0 wird. Bei hoherdimensionalen Funktionen geniigt es, dass die Werte un-
gleich 0 so angeordnet sind, dass mindestens eine Seite jedes Gebietes 0 ist, sodass
eine Seite des Hypervolumens und somit das ganze Hypervolumen unterhalb des
Gebietes 0 ist.

Solche sogenannten ,Funktionen vom Mall 0" fiihren dazu, dass das Integral nicht
mehr beim Skalarprodukt verwendet werden kann, weil sonst das Skalarprodukt
zweier Funktionen, die nicht tberall 0 sind, trotzdem 0 werden. Da man das Inte-
gral oft fiir Skalarprodukte verwenden mochte, werden Funktionen vom Mal 0 beim
Vervollstindigen ausgenommen.

Um nachzuvollziehen, wie so eine Vervollstindigung insgesamt ablaufen konnte,
nehmen wir als Beispiel einen Raum, in dem zu Beginn nur die Funktion f(x) = 3x
enthalten ist. Da man alle Elemente beliebig oft addieren darf, kommt man auch
auf f(x) = 6x, f(x) = 9x und so weiter. Durch Subtraktion kommt man auf f(x) =
0, f(x) = -3x, f(x) = -6x und so weiter.

Durch Multiplikation mit einem Skalar kommt man beispielsweise auf f(x) =
(durch Multiplikation mit , f(x) = 7,4x (durch Multiplikation mit %* und f(x)
mx durch Multiplikation mit Z, also allgemein auf alle Funktionen f(x) = ax.

Durch Multiplikation der Elemente kommt man beispielsweise auf f(x) = ax? (Mul-
tiplikation von f(x) = ax und f(x) = x) oder auf jede andere Funktion ax" durch
Wiederholung der Multiplikation mit f(x) = x. Da man auch auf diese Funktionen
die Addition anwenden kann, erhilt man bereits jede beliebige Potenzreihe der Form
ax + bx® + o3 + ...

Durch Division kommt man beispielsweise auf f(x) = a (Division von f(x) = ax
durch f(x) = x), f(x) = 3 (Division von f(x) = ax durch f(x) = x™™) und f(x) =
Cfn (Division von f(x) = bx durch f(x)=cx™*1), wobei man durch das letzte Beispiel
nichts Neues erreicht, weil g auch a ergeben kann. Kombiniert mit der Addition

erhdlt man somit alle Potenzreihen der Form f(x) = ... + ax + b + £ + ...

Das Vervollstindigen mit unendlichen Reihen hat oft auch iiberraschende Effekte.
Beispielsweise konvergiert die Reihe j + E—T + ’;—T + ... an jeder Stelle x gegen e*. Auf
diese Art und Weise erreicht man sogar jede Funktion, die man beliebig oft ableiten
kann. Grund dafiir: siehe Skriptum , Taylorreihen".

12


http://www.astronomieskripten.lima-city.de/Atronomieskripten/Mathematik/Taylorreihen.pdf
https://www.astronomieskripten.lima-city.de/Astronomieskripten/Mathematik/Taylorreihen.htm

	Euklidische Räume
	Allgemeines Skalarprodukt
	Strukturerhaltende Abbildungen
	Projektionen

	Unitäre Räume
	Komplexes Skalarprodukt
	Strukturerhaltende Abbildungen
	Dualräume

	Unendlichdimensionale Räume
	Operatoren
	Operatornorm
	Isometrien

	Hilberträume

