
Euklidische und unitäre Vektorräume

Bei euklidischen und unitären Vektorräumen ist neben der Addition und der Multi-
plikation auch das Skalarprodukt de�niert, wobei in euklidischen Räumen nur reelle
Zahlen und in unitären Räumen auch komplexe Zahlen vorkommen.

Skalarprodukte kommen in vielen Formeln vor: Man kann damit die Länge von Vek-
toren, den Winkel zwischen Vektoren, die von Vektoren eingeschlossenen Flächen,
Volumen und Hypervolumen und vieles mehr berechnen. Die Tatsache, dass man
in euklidischen Räumen vieles berechnen kann, bezeichnet man als �Reichheit der
Struktur�.

Die Struktur in euklidischen und unitären Räumen ist immer mindestens genauso
reich wie in Vektorräumen, weil die Vektorraumstruktur zur De�nition eines eukli-
dischen Raumes notwendig ist. Man kann euklidische und unitäre Räume auch als
Sonderfall eines Vektorraums au�assen.

Gleichzeitig ist die Struktur auch reicher als in normierten Räumen (das sind Räu-
me in denen eine Norm de�niert ist), weil man mit jedem Skalarprodukt eine Norm
berechnen kann (Wurzel aus dem Skalarprodukt mit sich selbst), nicht aber mit
jeder Norm ein Skalarprodukt. Euklidische und unitäre Räume sind also auch ein
Sonderfall eines normierten Vektorraums.

Der Vorteil von normierten Räumen und Vektorräumen ist, dass man sie leichter
de�nieren kann, als euklidische Räume, weil man sich dort die De�nition eines spe-
ziellen Skalarprodukts erspart.

1 Euklidische Räume

1.1 Allgemeines Skalarprodukt

Wenn in einem Vektorraum normale Vektoren im Anschauungsraum dargestellt wer-
den, verwendet man normalerweise das Skalarprodukt, das ihr schon aus der Schule
kennt, sodass die Fläche der Fläche im Anschauungsraum und der Winkel dem Win-
kel im Anschauungsraum entspricht. Um dieses von allgemeineren Skalarprodukten
zu unterscheiden, wird es auch als �Standardskalarprodukt� bezeichnet.

In einem Vektorraum können auch ganz andere Elemente dargestellt werden, be-
trachten wir beispielsweise den Raum der linearen Funktionen ax+b. Diese kann man
ganz willkürlich auf verschiedene Arten ordnen. Man kann beispielsweise auf der ei-
nen Achse den Wert a und auf der anderen Achse den Wert b auftragen, sodass man
das spezielle Skalarprodukt in diesem Raum mit der Formel a2+b2 berechnen kann.
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Für viele Anwendungen ist es jedoch sinnvoll, wenn das Skalarprodukt eine physika-
lische Bedeutung hat. Oft stellt die Fläche in einem Funktionenraum beispielsweise
eine gewichtete Summe dar.

Beispiel zur gewichteten Summe

Wenn v(x) die Geschwindigkeit eines Autos auf einer Straÿe und B(x) das verbrauch-
te Benzin pro Geschwindigkeit pro Meter (ist von der Reibung des Straÿenbelags an
der Stelle x abhängig) angibt, ist die gewichtete Summe zwischen xStart und xZiel
der gesamte Benzinverbrauch G auf der Strecke.

Um diesen zu berechnen, muss man v(x) und B(x) multiplizieren und erhält damit
eine Funktion, die an jeder Stelle den Benzinverbrauch des Autos angibt (Die Ge-
schwindigkeit wurde an jeder Stelle mit dem Benzinverbrauch pro Geschwindigkeit
pro Meter gewichtet). Dann zieht man die Funktionshöhe an jeder Stelle zwischen
xStart und xZiel zusammen, indem man die Fläche unter der Kurve (also das Integral
zwischen xStart und xZiel) berechnet.

Die Formel für den Benzinverbrauch ist folglich

G =

∫ xZiel

xStart

v(x)B(x) (1.1)

In einem Vektorraum, in dem die Formel für die gewichtete Summe als Skalarprodukt
de�niert ist, stellen die Funktionen v(x) und B(x) Vektoren dar, deren Schattenlän-
ge multipliziert gerade G ergibt. Bei diesem Beispiel scheint es unnötig kompliziert,
sich den Funktionenraum so zurechtzubiegen, dass der Benzinverbrauch eine gra-
�sche Bedeutung hat, aber für kompliziertere Anwendungen ist so eine gra�sche
Anschauung gut, um nicht den Überblick zu verlieren.

Wenn man wissen möchte, welche Werte man auf den Achsen eines Vektorraumes
auftragen muss, kann man sich mit Hilfe des Gram-Schmidt-Verfahrens und belie-
bigen Funktionen in dem Raum eine Orthonormalbasis ausrechnen (Erklärung siehe
Skriptum �Gram-Schmidt-Verfahren�).

Einschränkungen des allgemeinen Skalarprodukts

Die gra�sche Eigenschaft des Skalarprodukts, dass es eine Multiplikation der Schat-
ten darstellt, führt zu gra�schen Einschränkungen:

In der folgenden Au�istung sind u,v und w Vektoren, λ eine Zahl und <v|w> stellt
das Skalarprodukt dar

• 〈v |v〉 ≥ 0: Das Quadrat des Schattens, muss immer gröÿer gleich 0 sein
(Schatten mit komplexer Länge gibt es nicht).

• 〈v |v〉 = 0 wenn v = 0: Das Quadrat des Schattens auf sich selbst ist das
Quadrat der Länge. Dieses kann nur dann 0 sein, wenn die Länge selber 0 ist.

• 〈v |w〉 = 〈w |v〉: Das Produkt zweier Schatten ist kommutativ, da schon das
normale Produkt kommutativ ist
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• 〈λv |w〉 = 〈v |λw〉 = λ〈v |w〉: Wenn einer der Vektoren um den Faktor λ
verlängert wird, wird auch sein Schatten und folglich auch das Produkt der
Schatten um den Faktor λ verlängert.

• 〈v + u|w〉 = 〈u|w〉+ 〈v |w〉: Der Schatten der Summe zweier Vektoren, ent-
spricht der Summe der Schatten (der Schatten kann auch abgezogen werden).

• 〈v |u+w〉 = 〈v |w〉+ 〈u|w〉: Diese Einschränkung muss man nicht extra de�-
nieren, denn man kann diese mit dem Kommutativgesetz zur vorigen Aussage
umdrehen.

1.2 Strukturerhaltende Abbildungen

Eine reiche Struktur führt dazu, dass es nur sehr wenige strukturerhaltende Ab-
bildungen gibt. Das erkennt man gerade bei euklidischen Vektorräumen besonders
gut: Da man mit dem Skalarprodukt Winkel berechnen kann, dürfen sich diese nicht
verändern. Es sind daher höchstens Drehstreckungen strukturerhaltend. Da man mit
dem Skalarprodukt auch die Norm de�nieren kann, dürfen die Vektoren ihre Länge
nicht ändern. Das führt dazu, dass die Vektoren auch nicht mehr gestreckt oder
gestaucht werden können. Es bleiben nur noch Drehspiegelungen über.

Reine Drehungen und Spiegelungen mit Cosinus- und Sinustermen sind noch relativ
leicht zu erkennen (Erklärung siehe Skriptum �Räume und Abbildungen�). Wenn je-
doch mehrere Drehungen kombiniert werden und/oder die Sinus- und Cosinusterme
explizit ausgerechnet sind, geht das nicht so einfach.

Um herauszu�nden, welche Eigenschaften die Matrizen dieser strukturerhaltenden
Abbildungen erfüllen müssen, wollen wir das Skalarprodukt als Sonderfall eines Ma-
trixprodukts au�assen. Damit man das Skalarprodukt mit den Rechenregeln einer
Matrizenmultiplikation berechnen kann, muss man den ersten Vektor als Zeilenvek-
tor und den zweiten Vektor als Spaltenvektor anschreiben.

< v |w >= (v1, v2)

(
w1

w2

)
(1.2)

Der Zeilenvektor wird auch als Bra-Vektor <v| und der Spaltenvektor als Ket-Vektor
|w> bezeichnet. Die Idee hinter dieser Schreib- und Sprechweise ist, dass man das
Skalarprodukt aus zwei Bausteinen zusammensetzt, die zusammen ein Skalarpro-
dukt <v|w> bzw. Bra-Ket (für das englische Wort bracket = Baustein) bilden. Lasst
euch nicht davon verwirren, dass diese Zusammensetzung sprachlich und schriftlich
schlampig ist (das c im Wort bracket wird beim Zusammensetzen verschluckt und
der Strich in der Mitte wird beim auseinanderteilen verdoppelt). Wichtig ist bei
dieser Zusammensetzung nur, dass es sich mathematisch genau zu einem Skalar-
produkt zusammenfügt.

Damit eine Abbildung das Skalarprodukt erhält <a|b>=<f(a)|f(b)> muss die Än-
derung des Spaltenvektors genau die Änderung des Zeilenvektors ausgleichen und
umgekehrt, das heiÿt, wenn man die Matrix auf einen Zeilenvektor anwendet, muss
genau das inverse herauskommen, wie wenn man die Matrix auf einen Spaltenvek-
tor anwendet (f (a) = f −1(b)). Matrizen und Abbildungen für die das gilt, heiÿen
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�orthogonal�.

Die Funktion f(b) (Spaltenvektor mal Matrix) entspricht genau dem Vektor-Matrix-
Produkt. Bei der Funktion f(a) (Zeilenvektor mal Matrix) wirken die Zeilen so, wie
beim Vektor-Matrix-Produkt die Spalten. Folglich muss man bei der Matrix Zeilen-
und Spaltenindex vertauschen, damit es zu einem Vektor-Matrix-Produkt wird. Beim
Vektor ist der einzige Index nicht mehr ein Zeilenindex sondern ein Spaltenindex.

Das Vertauschen von Zeilen- und Spaltenindex bezeichnet man als �transponieren�
bzw. AT , wobei A die Matrix ist, die transponiert wird und T die Abkürzung für
transponieren. Mit dieser Schreibweise kann man als Bedingung für die Orthogona-
lität einer Matrix AT = A−1 angeben.

Symmetrische Abbildungen

Im Allgemeinen wirken Matrizen auf Zeilenvektoren anders als auf Spaltenvektoren.
Für das Skalarprodukt bedeutet das, dass ein Vektor am Anfang des Skalarpro-
dukts anders als derselbe Vektor am Ende des Skalarprodukts abgebildet wird. Das
kann natürlich unbefriedigend sein, weil es geometrisch keinen Unterschied zwischen
Zeilen- und Spaltenvektoren gibt.

Es gibt jedoch auch Matrizen bei denen das Problem nicht auftritt: Sie wirken auf
die Zeilenvektoren genau so wie auf die Spaltenvektoren. Dafür ist es notwendig,
dass in den Zeilen genau dieselben Einträge, wie in den Spalten stehen, es gilt
AT = A. Diese Matrizen werden als �symmetrisch� bezeichnet, weil die Spiegelung
entlang der Diagonale, bei der Zeilen- und Spaltenindex gleich groÿ sind (diese wird
als Hauptdiagonale bezeichnet) die Einträge nicht verändern.

Wenn man mehrere symmetrische Matrizen multipliziert, ist die Matrix immer noch
symmetrisch. Das liegt daran, dass nach der Matrizenmultiplikation im Index ij das
Produkt der iten Zeile mit der jten Spalte steht. Im Index ji steht das Produkt der
jten Zeile mit der iten Spalte. Da in der iten Zeile dasselbe, wie in der iten Spalte
(und somit auch in der jten Zeile dasselbe wie in der jten Spalte) steht, müssen die
Einträge ij und ji auch nach der Matrizenmultiplikation noch gleich sein.

Drehungen und Drehspiegelungen

Drehmatrizen und Drehspiegelungen sind immer symmetrisch. Das kann man bei
Drehungen um eine Achse und Spiegelungen direkt sehen. Wenn man Drehungen
um mehrere Achsen und Spiegelungen kombiniert, entspricht das der Matrizenmul-
tiplikation dieser Drehungen, sodass die Matrix symmetrisch bleibt.

Orthogonal sind die Abbildungen im allgemeinen nicht: Da aufgrund der Symmetrie
AT = A gilt, müsste, damit die Bedingung AT = A−1 stimmt, A = A−1 sein und
somit AA = AA−1 =11 gelten. Das stimmt zwar für Spiegelungen und Drehungen
um 180◦, bei anderen Drehungen muss man jedoch den negativen Winkel in die
Drehmatrix einsetzen um zurück zum Ausgangsvektor zu kommen.

Beim symmetrischen Sinus führt das zu keiner Änderung, beim antisymmetrischen
Cosinus verändern die Terme jedoch ihr Vorzeichen. Das führt dazu, dass das Ska-
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larprodukt manchmal das Vorzeichen umdreht (wenn eine ungerade Anzahl von Co-
sinustermen auftritt). Das bedeutet intuitiv, dass nach einer Drehung der Schatten
nach hinten zeigen kann.

1.3 Projektionen

Mit Hilfe des Skalarprodukts kann man auch Untervektorräume mit weniger Di-
mensionen de�nieren (zum Beispiel eine Linie in einer Fläche, eine Fläche in einem
Raum, eine Linie in einem Raum oder eine m-dimensionale Hyper�äche in einem
n-dimensionalen Hypervolumen).

Im allgemeinen bilden Projektionen einen n-dimensionalen Raum auf einen m-dimensionalen
Unterraum ab. Bei erneuter Anwendung der Projektion bleiben alle Vektoren in-
nerhalb dieses m-dimensionalen Unterraums gleich. Ein wichtiger Spezialfall von
Projektionen sind Orthogonalprojektionen, die jeden Vektor auf seinen Schatten
abbilden.

Orthogonalprojektionen

Wenn man einen Vektor <v| mit Länge 1 und einen Vektor |w> multipliziert, erhält
man die Länge des Schattens von |w> auf eine Linie in Richtung des Vektors <v|.
Multiplikation der Zahl mit |v> (also einem Spaltenvektor, der genau die gleichen
Einträge wie der Zeilenvektor |v> hat) ergibt einen Vektor mit der Richtung |v>
und der Länge <v|w> (also der Länge des Schattens). Das entspricht dem auf diese
Linie projezierten Vektor.

Insgesamt kann man die Projektion des Vektors w auf die Linie v mit der Formel
|v><v|w> aufschreiben. |v><v| ist somit eine Matrix V, die jeden Vektor |w> auf
eine Linie, die vom Vektor v aufgespannt wird, abbildet. (Das Bilden des Matrizen-
produkts der beiden Vektoren ergibt das Tensorprodukt, weil der Spaltenvektor vor
dem Zeilenvektor steht).

(
v1
v2

)
(v1, v2) =

(
v2
1 v1v2

v2v1 v2
2

)
(1.3)

Wenn man die Projektionsmatrix zwei mal anwendet, ändert das nichts mehr, weil
bereits jeder Vektor w auf den Vektor v projiziert wurde, folglich gilt in Matrix-
schreibweise V 2 = V bzw. in Bra-Ket-Notation |v><v|v><v|=|v><v|. In Bra-
Ket-Notation erkennt man, dass in der Mitte <v|v> (die Norm des Vektors zum
Quadrat) steht und das ist laut Voraussetzung schon 1.

Spektralzerlegung

Die Spektralzerlegung entspricht der Teilung eines Vektors in seine Komponenten.
Beispielsweise ist die Spektralzerlegung des Vektors (x,y,z) = x(1,0,0) + y(0,1,0)
+ z(0,0,1). Bei gewöhnlichen Vektoren erscheint einem das trivial, das ändert sich
jedoch wenn in dem Vektorraum Funktionen oder andere komplexe Elemente ein-
getragen sind.
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Um so eine Spektralzerlegung zu erhalten, muss man den Vektor |w> auf jeden
der n Basisvektoren |vi> projizieren und die Projektionen addieren. Die allgemeine
Formel für die Spektralzerlegung lautet daher

n∑
i=1

|vi >< vi |w > (1.4)

2 Unitäre Räume

2.1 Komplexes Skalarprodukt

Wenn man im komplexen versucht, ein normales Skalarprodukt zu berechnen, wird
man schnell an den Einschränkungen (speziell daran, dass das Skalarprodukt immer
positiv ist) scheitern. Wenn man beispielsweise den Vektor (i,0) quadriert, bekommt
man den Betrag -1. Das ist natürlich ein Problem, weil die Länge eines Vektors nicht
negativ und schon gar nicht komplex sein kann.

Man kann jetzt auf die Idee kommen, dass man die komplexen Koordinaten wie
zwei zusätzliche Koordinaten betrachtet (eine für den Realteil und eine für den
Imaginärteil). Beim Imaginärteil muss natürlich der Faktor i wegfallen, damit das
Skalarprodukt positiv bleibt. Um das zu erreichen, kann man einen Eintrag als kom-
plex konjugiert de�nieren, denn -i mal i ist 1. Welchen Eintrag man als komplex
konjugiert de�niert, ist egal und wird daher auch in der Literatur nicht einheitlich
gehandhabt.

Durch die De�nition der komplexen Konjugation, werden zwar einige Eigenschaften
aufgeweicht (das Skalarprodukt ist nicht mehr kommutativ, sondern man erhält
durch Vertauschen das komplex konjugierte Ergebnis und die Multiplikation mit
einer komplexen Zahl führt in einer der Koordinaten zur Multiplikation des Ergebnis
mit dem komplex konjugierten) aber zumindest bleibt das reele Skalarprodukt der
Speziellfall des komplexen Skalarprodukts für reelle Zahlen.

2.2 Strukturerhaltende Abbildungen

Beim komplexen Skalarprodukt muss man einen der beiden Vektoren (entweder den
Zeilen- oder den Spaltenvektor) komplex konjugieren. Folglich genügt es nicht mehr,
wenn man die Zeilen und Spalten der Matrix vertauscht, sondern man muss diese
zusätzlich komplex konjugieren. Diesen Vorgang bezeichnet man als �adjungieren�
bzw. A+, wobei A die Matrix ist, die adjungiert wird und + das Zeichen für adjungie-
ren. Damit eine Matrix das komplexe Skalarprodukt erhält, muss folglich A+ = A−1

gelten. Diese Matrizen bezeichnet man als unitäre Matrizen. Insbesondere ist die
reelle orthogonale Matrix ein Spezialfall der unitären Matrix.

Es gibt auch im komplexen Matrizen, die auf Spaltenvektoren und komplex kon-
jugierte Zeilenvektoren exakt gleich wirken. Dafür muss A+ = A gelten und man
bezeichnet diese Matrizen als �hermitesch�. Gra�sch gesehen bedeutet das, dass die
Vektoren entlang der reellen Achsen weiterhin beliebig gedreht werden dürfen. Die
komplexen Achsen müssen jedoch gleich bleiben, gespiegelt oder um genau 180◦

gedreht werden. Jede andere Drehung würde dazu führen, dass sich die Einträge
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im adjungierten Vektor anders ändern, weil dort der Vektor in die andere Richtung
gedreht werden würde.

2.3 Dualräume

Dualräume sind Räume die Elemente eines Vektorraumes auf komplexe Zahlen ab-

bilden. Betrachten wir beispielsweise den Dualraum der den Vektor v=

(
1
1

)
auf die

Zahl 2 abbildet.

(
1
1

)
(w1,w2) = 2 (2.1)

Dann sind in dem Raum alle Vektoren enthalten, für die gilt w1 + w2 = 2. An-
schaulich betrachtet, sind das alle Vektoren, deren Schatten auf den Vektor v die
Länge

√
2 hat. Wenn man einen Strich zeichnet, der

√
2 Einheiten vom Ursprung

des Vektors v entfernt im rechten Winkel auf den Vektor v steht (Lichtstrahl, der
das Ende des Schattens erzeugt), enden alle Vektoren des Dualraums, die beim
Ursprung des Vektors v beginnen bei diesem Strich und alle Vektoren, die beim
Ursprung des Vektors v beginnen und beim Strich enden, sind im Dualraum.

Dass der Strich genau beim Ende des Vektors v ist, liegt daran, dass der Vektor v
selbst zufälligerweise auch im Dualraum liegt (Das Quadrat der Länge des Vektors
ist ebenfalls 2).

Vollkommen analog kann man den Dualraum mit einem abstrakten Skalarprodukt
berechnen. Betrachtet man beispielsweise alle Funktionen, die die Funktion f(x)=1
mit dem Skalarprodukt

∫ 1

−1
f (x)g(x)dx auf die Zahl 2 abbilden

∫ 1

−1

g(x)dx = 1 (2.2)

Dann sind im Dualraum alle Funktionen enthalten, die zwischen den Werten -1 und
1 eine Fläche mit dem Flächeninhalt 1 unter der Kurve haben.

Der Dualraum des Dualraums ist der Bidualraum. Da das reelle Skalarprodukt kom-
mutativ ist, und im komplexen einer der beiden Beiträge komplex konjugiert wird,
ist das komplexe Skalarprodukt hermitesch (das heiÿt, durch Vertauschen wird das
Ergebnis komplex konjugiert). Folglich führt der Bidualraum zum komplex konju-
gierten des ursprünglichen Vektors zurück.
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3 Unendlichdimensionale Räume

Unendlichdimensionale Räume sind Räume, die von unendlich vielen Basisvektoren
aufgespannt werden. Das heiÿt nicht zwangsläu�g, dass es darin Elemente gibt, die
von unendlich vielen Basisvektoren aufgespannt werden und somit zu einer unend-
lich langen Spektralzerlegung führen.

Betrachten wir beispielsweise den Raum der endlich langen Reihen, wobei die Ba-
sisvektoren die Reihen mit einem Index 1 und sonst lauter Indizes 0 sind. In diesem
Raum kann jedes Element (z.B. die Reihe 1,2,3) durch eine endliche Spektralzerle-
gung dargestellt werden, nämlich für jedes Element der endlich langen Reihe eine
Reihe in der dieses Element 1 und die anderen 0 sind mal der Gröÿe des Elements (in
unserem Beispiel ergibt 1 x 1,0,0 + 2 x 0,1,0 + 3 x 0,0,1 genau die Reihe 1,2,3). Da
die Reihen in diesem Raum beliebig lang sein können, gibt es jedoch keine Menge
von Basisvektoren, die alle Elemente erreichen.

Noch komplizierter sind Räume, in denen selbst die Elemente nicht durch eine endli-
che Spektralzerlegung dargestellt werden, beispielsweise die Menge der unendlichen
Reihen. In diesem Raum kann jedes Element durch eine unendlich lange Spektral-
zerlegung dargestellt werden (z.B. das Element 1,2,3,... durch 1 x 1,0,0,... + 2 x
0,1,0... + 3 x 0,0,1,...+...). Immerhin kann man sie jedoch noch in einzelne, wenn
auch unendlich viele, Dimensionen separieren. Deshalb nennt man sie separable Räu-
me.

Wenn die Anzahl der Dimensionen jedoch überabzählbar unendlich wird, funktio-
niert das nicht mehr. Betrachten wir beispielsweise den Raum aller Funktionen. In
diesem Raum kann man die Basis noch immer ähnlich wie bei den Reihen de�nieren
(Jede Basisfunktion ist an einer Stelle 1 und an allen anderen Stellen 0). Wenn man
die Spektralzerlegung aufschreiben möchte, hat man jedoch schon das Problem, wo
man anfangen soll: Wenn man mit der Funktion, die an der Stelle 1 1 ist anfängt,
überspringt man die Funktion, die an der Stelle 0,1 1 ist. Wenn man mit der Funk-
tion, die an der Stelle 0,1 1 ist, anfängt, überspringt man die Funktion, die an der
Stelle 0,01 1 ist und so weiter. Bei jeder weiteren Stelle hat man das Problem erneut.

Was schon geht, ist, dass man die Summe unendlich stark verdichtet, so dass sie zu
einem Integral wird. Die Funktion würde dann zum Integral über die Funktion 1 (was
der Aufsummierung eines Peaks mit Höhe 1 an jeder Stelle entspricht) und zwar df(x)
(das bedeutet, dass jede Stelle mit dem jeweiligen Funktionswert multipliziert wird).∫
1df (x) ist für jede beliebige Funktion f(x) wodurch das Ergebnis der Spektralzer-

legung wieder stimmt. Das Integral über eine andere Zahl entspräche Basisvektoren
mit einer anderen Länge und das Integral über eine Funktion g(x) entspräche un-
terschiedlich langen Basisvektoren, wobei die Funktionswerte der Funktion g(x) die
Länge des Basisvektors mit Peak an dieser Stelle angibt. Da man die Basisvektoren
mit einer dementsprechend anderen Zahl multipliziert, wird nach d f (x)

g(x) integriert.

3.1 Operatoren

Operatoren sind das analogon zu linearen Abbildungen. Allerdings kann man sie im
Gegensatz zu linearen Abbildungen nicht mehr unbedingt mit Matrizen (zumindest
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nicht mit endlichdimensionalen) darstellen.

Bei seperablen Räumen kann man sich noch mit unendlichgroÿen Matrizen weiter-
helfen. Betrachten wir beispielsweise auf dem seperablen Raum der unendlichlangen
Reihen einen Operator, der von jeder Stelle die vorige Stelle abzieht, so kann man
das mit der Matrix


1 0 0 ...
−1 1 0 ...
0 −1 1 ...
... ... ... ...

 (3.1)

darstellen.

Wenn man das jedoch verallgemeinert, und auf den Raum der Funktionen den Ab-
leitungsoperator anwendet, geht das nicht mehr, weil dann die Matrixeinträge auch
unendlich dicht beieinander stehen müssten. Dennoch ist der Operator weiterhin
linear (wenn zwei Funktionen addiert oder multipliziert werden, werden auch ihre
Steigungen addiert bzw. multipliziert).

3.2 Operatornorm

Die Operatornorm gibt die maximale Vergröÿerung eines Vektors durch den Operator
an, das heiÿt die Länge des Vektors nach Anwendung des Operators wird durch die
Länge des Vektors vor der Anwendung dividiert und wenn das Ergebnis vom Vektor
abhängt, nimmt man das gröÿtmögliche Ergebnis

||O||Op = sup
||Ov ||
||v ||

(3.2)

In dieser Formel steht O für Operator und v für Vektor. Das Supremum (sup) gibt
an, dass man den Vektor nehmen muss, für den das Ergebnis am gröÿten ist und
der Index op gibt an, dass es sich um die Operatornorm handelt..

Dabei ist nicht garantiert, dass die Norm immer endlich bleibt. Betrachtet man
beispielsweise den Operator, der den zweiten Vektoreintrag verdoppelt, den dritten
verdreifacht und so weiter. Dann bleibt jeder Vektoreintrag endlich, aber die Norm
wird dennoch ∞-fach so groÿ.

Genauso kann die Norm auch den Wert ∞ annehmen, wenn der zweite Eintrag mit
-2, der dritte Eintrag mit -3 und so weiter multipliziert wird. Dann ist der Vektor
zwar nachher -∞-fach so lang, durch den Betrag wird der Wert aber wieder positiv.

Man bezeichnet eine Operatornorm als beschränkt, wenn die Operatornorm nicht
unendlich werden kann, das heiÿt wenn der Operator die Länge jedes Vektors nur
um einen endlichen Faktor streckt.

Die beschränkten Operatoren sind gleichzeitig immer stetig, denn wenn man jeden
Eintrag nur um einen beliebig kleinen Wert ändert, kann man auch die Operator-
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norm beliebig wenig ändern.

Möchte man beispielsweisweise die Operatornorm nur um den Wert ε ändern, zählt
man beim ersten Eintrag ε

22 , beim zweiten ε
42 beim dritten ε

82 und so weiter zum
Operator dazu. In der Norm steht dann ε

2 + ε
4 + ε

8 + ... = ε mehr.

Die unbeschränkten Operatoren sind hingegen immer unstetig, denn egal wie klein
der Faktor ist, den man dazuzählt, durch die Multiplikation mit ∞ wird die Norm
dadurch immer um ∞ gröÿer.

Auch die beschränkte Operatornorm hat manchmal überraschende Ergebnisse: Wenn
der zweite Eintrag halbiert, der dritte gedrittelt und so weiter wird, ist der Nenner
unendlichfach so groÿ wie der Zähler, sodass die Norm 0 wird, obwohl die Länge
des Vektors nach Anwendung des Operators immer noch ∞ ist.

Ein weiterer ungewohneter Fall entsteht, wenn der erste Eintrag mit 0 und alle
anderen mit 1 multipliziert werden. Dann ist die Operatornorm nämlich immer noch
1, weil der Eintrag im ersten Element meistens ∞-fach kleiner als die restliche ∞-
lange Reihe ist. Die restliche Reihe kann zwar auch konvergieren, aber dann ist der
Quotient kleiner als 1 und somit nicht das Supremum.

3.3 Isometrien

In unendlichdimensionalen Räumen gibt es Operatoren, die zwar das Skalarprodukt
erhalten aber dennoch nicht orthogonal bzw. unitär sind. Diese Operatoren bezeich-
net man als Isometrien.

Ein Beispiel für eine Isometrie ist ein Operator, der eine Null als erstes Element
einfügt

A =


0 1 0 ...
0 0 1 ...
0 0 0 ...
... ... ... ...

 (3.3)

Nach dem Anwenden des Operators ist das Skalarprodukt weiterhin die Summe aller
Elemente. Allerdings gilt nicht mehr AT = A−1 weil bei der inversen Abbildung das
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erste Element verloren geht

AT =


0 0 0 ...
1 0 0 ...
0 1 0 ...
... ... ... ...

 (3.4)

und dadurch auch eine andere Zahl im ersten Element stehen könnte.

4 Hilberträume

Hilberträume sind vollständige unendlichdimensionale Vektorräume mit Skalarpro-
dukt. Man kann auch unvollständige unendlichdimensionale Vektorräume durch Hin-
zufügen von zusätzlichen Mitgliedern zu vollständigen Hilberträumen ergänzen. Die-
ses Vorgehen nennt man �vervollständigen�.

Um den Vorgang des Vervollständigen zu verstehen, betrachten wir ihn zunächst
einmal in einem endlichdimensionalen Raum. Wenn dort ein Raum unvollständig
ist (zum Beispiel weil das Element (1,1) fehlt) kann man innerhalb des Raumes
Vektoren so addieren, subtrahieren, mit einem Skalar multiplizieren, multiplizieren
oder dividieren, dass man den Raum verlässt (z.B. kann man in unserem Beispiel die
Elemente (1,0) und (0,1) addieren). Wenn der Raum vollständig ist, kommt man
mit den im Vektorraum de�nierten Rechenarten nicht mehr aus dem Raum heraus.

Dabei muss man beachten, dass man manchmal auch unendlich viele Rechenschrit-
te anwenden muss, um einen unvollständigen Raum zu verlassen. Betrachten wir
den Raum der rationalen Zahlen: Diesen kann man beispielsweise verlassen, indem
man die Stellen von π aufaddiert (3 + 0,1 + 0,04 + ...) und den Raum bei der
irrationalen Zahl π verlässt. Da π unendlich viele Stellen hat, musste man jedoch
unendlich viele Zahlen addieren, um den Raum zu verlassen.

Bei der Vervollständigung muss man jede Zahl, die man durch endlich oder un-
endlich viele Rechenschritte erreicht, in die Menge aufnehmen. Zu der Menge der
rationalen Zahlen werden also alle irrationalen Zahlen dazu genommen, sodass man
auf die Menge der reellen Zahlen kommt. In endlichdimensionalen Fällen ist dieser
Vorgang sehr einfach, weil man nur entlang jeder Achse alle reellen Zahlen auftragen
und daher gar nicht wirklich unendliche Reihen addieren muss.

Bei unendlichdimensionalen Räumen kommt man nicht mehr um unendlich lange
Rechnungen zum Vervollständigen herum und das kann bei einigen Räumen (z.B.
Funktionenräumen) zu einigen Schwierigkeiten führen.

Eine Schwierigkeit ist, dass nicht alle Reihen eindeutig gegen einen Wert konver-
gieren. Zum Beispiel die unendliche Summe 1-1+1-1... konvergiert entweder gegen
0 oder gegen 1, je nachdem ob man die Summe bei einer geraden oder ungeraden
Stelle abbricht. In dem Fall muss man beide Möglichkeiten aufnehmen.

Eine andere Schwierigkeit wirkt sich speziell bei Funktionen aus: Es entstehen beim
Vervollständigen Funktionen mit dem Integral 0, die dennoch von 0 verschieden sind.
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Bei eindimensionalen Funktionen passiert das, wenn nur einzelne Werte ungleich 0
sind, sodass eine Seite der Fläche unterhalb der Kurve 0 und somit der Flächeninhalt
ebenfalls 0 wird. Bei höherdimensionalen Funktionen genügt es, dass die Werte un-
gleich 0 so angeordnet sind, dass mindestens eine Seite jedes Gebietes 0 ist, sodass
eine Seite des Hypervolumens und somit das ganze Hypervolumen unterhalb des
Gebietes 0 ist.

Solche sogenannten �Funktionen vom Maÿ 0� führen dazu, dass das Integral nicht
mehr beim Skalarprodukt verwendet werden kann, weil sonst das Skalarprodukt
zweier Funktionen, die nicht überall 0 sind, trotzdem 0 werden. Da man das Inte-
gral oft für Skalarprodukte verwenden möchte, werden Funktionen vom Maÿ 0 beim
Vervollständigen ausgenommen.

Um nachzuvollziehen, wie so eine Vervollständigung insgesamt ablaufen könnte,
nehmen wir als Beispiel einen Raum, in dem zu Beginn nur die Funktion f(x) = 3x
enthalten ist. Da man alle Elemente beliebig oft addieren darf, kommt man auch
auf f(x) = 6x, f(x) = 9x und so weiter. Durch Subtraktion kommt man auf f(x) =
0, f(x) = -3x, f(x) = -6x und so weiter.

Durch Multiplikation mit einem Skalar kommt man beispielsweise auf f(x) = x
(durch Multiplikation mit 1

3 , f(x) = 7,4x (durch Multiplikation mit 7,4
3 und f(x) =

πx durch Multiplikation mit π
3 , also allgemein auf alle Funktionen f(x) = ax.

Durch Multiplikation der Elemente kommt man beispielsweise auf f(x) = ax2 (Mul-
tiplikation von f(x) = ax und f(x) = x) oder auf jede andere Funktion axn durch
Wiederholung der Multiplikation mit f(x) = x. Da man auch auf diese Funktionen
die Addition anwenden kann, erhält man bereits jede beliebige Potenzreihe der Form
ax + bx2 + cx3 + ...

Durch Division kommt man beispielsweise auf f(x) = a (Division von f(x) = ax
durch f(x) = x), f(x) = a

xn (Division von f(x) = ax durch f(x) = xn+1) und f(x) =
b
cxn (Division von f(x) = bx durch f(x)=cxn+1), wobei man durch das letzte Beispiel
nichts Neues erreicht, weil b

c auch a ergeben kann. Kombiniert mit der Addition
erhält man somit alle Potenzreihen der Form f(x) = ... + ax + b + c

x + ...

Das Vervollständigen mit unendlichen Reihen hat oft auch überraschende E�ekte.
Beispielsweise konvergiert die Reihe x

1! +
x2

2! +
x3

3! +... an jeder Stelle x gegen ex . Auf
diese Art und Weise erreicht man sogar jede Funktion, die man beliebig oft ableiten
kann. Grund dafür: siehe Skriptum �Taylorreihen�.
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