Gram-Schmidt-Verfahren

2D-Flache im 3D-Raum

Gegeben ist eine 2-dimensionale Fliche in einem 3-dimensionalen Raum. Man moch-
te Punkte auf dieser Fliche angeben. Das kann man natiirlich mit 3-dimensionalen
kartesischen Koordinaten machen. Da alle Punkte auf derselben Fliche liegen, ist
das aber gar nicht notwendig, sondern man kann ein 2-dimensionales kartesisches
Koordinatensystem auf der Flache definieren und kommt so mit einer Koordinate
weniger aus.

Dass das immer moglich ist, kann man sich leicht klar machen, indem man sich ein
kariertes Blatt Papier vorstellt, wobei die Linien das kartesische Koordinatensystem
darstellen. Man kann dieses Blatt Papier auf jede beliebig ausgerichtete Flache legen
und die Linien stellen stets ein 2-dimensionales Koordinatensystem auf dieser Flache
dar.

Sie erfiillen dabei stets zwei Bedingungen:
e Die Linien stehen alle im rechten Winkel aufeinander (Orthogonalitét)
e Die Abstinde zwischen den Linien sind gleich groR (Normierung)

Man spricht deshalb auch von einem Orthonormalsystem.

Beim Gram-Schmidt-Verfahren versucht man ein solches Orthonormalsystem zu ei-
ner vorgegebenen Flache zu finden.

Beispiel
Eine 2-dimensionale Fliche wird im 3-dimensionalen Raum von den Koordinaten

3=(0,3,0) und b=(2,2,0) aufgespannt.

Finde mit Hilfe des Gram-Schmidt-Verfahren ein Orthonormalsystem auf dieser Fla-
chel
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Grafische Darstellung der Ausgangslage.
Die Vektoren sind unterschiedlich lang und stehen nicht
im rechten Winkel aufeinander.

Schritt 1: Normieren des Vektors 3.

Damit der Vektor 3 die Linge 1 hat, muss man
ihn durch seinen Betrag dividieren. Wir erhalten
(0,3,0):3=(0,1,0).

Schritt 2: Orthogonalisieren des Vektors b beziig-
lich 3.

Damit der Vektor b orthogonal auf den Vektor & steht,
muss man den Vektor ¢ davon abziehen. Dieser Vek-
tor entsprcht dem Schatten von b auf a, man erhalt
die Lange von ¢ also indem man das Skalarprodukt
zwischen b und dem normierten Vektor 3 bildet. Wir
erhalten (2,2,0)(0,1,0)=2.

Um die Koordinaten von ¢ zu erhalten, muss man die
Lange mit der Richtung (normierter Vektor 3) multipli-
zieren. Wir erhalten 2(0,1,0)=(0,2,0). Subtraktion des
Vektors & von b ergibt (2,2,0)-(0,2,0)=(2,0,0).

Schritt 3: Normieren des Vektors b. .
Zu guter Letzt miissen wir noch den Vektor b normie-
ren. Wir erhalten (2,0,0):2=(1,0,0). Jetzt bilden 3 und

b ein Orthonormalsystem.

Zur Probe kann man iiberpriifen, ob alle Vektoren orthogonal (Das Skalarprodukt
von 3 und b ist 0) und normal (Der Betrag von & und b ist 1) sind.

Dass in unserem Beispiel genau die Standardbasis herauskommt, liegt an der An-
gabe: Darin war unsere Ebene bereits eben (die z-Koordinate war 0), damit der
Vorgang im Skriptum geometrisch dargestellt werden kann. AuBerdem ist der Vek-
tor 3 genau auf der y-Achse gelegen. (Wenn wir beispielsweise mit dem Vektor b
begonnen héatten, der im 45°-Winkel zur y-Achse liegt und den Vektor & beziiglich

—

b orthogonalisiert hitten, wire das Koordinatensystem um 45° gedreht gewesen).

In unserer Anschauung mit dem karierten Papier bedeutet das, dass dieses um 45°
gedreht auf der Ebene liegt. Das Papier kann auf jeder Ebene mit jeder beliebigen
Drehung liegen, das bedeutet, dass es zu jeder Ebene unendlich viele mégliche
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Orthonormalsysteme gibt.

Verallgemeinerung auf mehr Dimensionen

Analog zu den Koordinaten einer 2-dimensionalen Flache, die von 2 Vektoren im
3-dimensionalen Raum aufgespannt wird, kann man auch die Koordinaten einer
m-dimensionalen Hyperflache, die von m Vektoren im n-dimensionalen Hyperraum
aufgespannt wird, berechnen. Wozu man mehr als 3 Dimensionen benétigt, wird im
Abschnitt Verallgemeinerung auf abstraktere Raume klar.

Das Verfahren der Normierung und der Orthogonalisierung ist ganz analog wie bei
den 2-dimensionalen Flachen im 3-dimensionalen Raum. Der einzige Unterschied ist,
dass man die Vektoren beziiglich aller bereits ausgerechneter Koordinaten orthogo-
nalisieren muss. Zum Beispiel ist der Vorgang fiir einen 3-dimensionalen Raum, der
in einem hoherdimensionalen Hyperraum aufgespannt ist, so:

. Normieren von ¢

. Orthogonalisieren von b beziiglich ¢
. Normieren von b

. Orthogonalisieren von 3 beziiglich
. Orthogonalisieren von 3 beziiglich
. Normieren von 3

c
b

SO WN -

Den ersten Vektor muss man daher 0 mal orthogonalisieren, den zweiten 1 mal und
den dritten 2 mal. Den nten Vektor miisste man n-1 mal orthogonalisieren.

b -
Die Vektoren & und b in dieser Abbildung sind schon

beziiglich dem Vektor ¢, der orthogonal aus dem Skrip-
tum herausragt, normal. Damit das System zur Ganze
orthogonal ist, muss man auch noch den Vektor 3 be-
ziiglich b orthogonalisieren.

]

Bei der Probe, priift man das Skalarprodukt jeder Kombination: Es gilt 3¢ = 0,
b¢ = 0, b3 = 0. (In der obenstehenden Grafik ist nur die letzte Bedingung nicht
erfiillt.) Fiir n Dimensionen miisste man also (n-1)! Skalarprodukte iiberpriifen.

Verallgemeinerung auf abstraktere Raume

In der Mathematik ist es oft praktisch, mathematische Zusammenhange, die physi-
kalisch nichts mit Dimensionen zu tun haben, trotzdem als n-dimensionale Raume
darzustellen. Beispielsweise werden die komplexen Zahlen ai+b in der GauRschen
Zahlenebene so dargestellt, dass a auf die y-Achse und b auf die x-Achse aufgetra-
gen wird.

Dass die imagindre Achse normal auf die reelle Achse steht ist vollkommen will-
kiirlich und hat nichts mit der physikalischen Bedeutung einer negativen Wurzel zu
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tun. Dennoch erleichtert diese Darstellung die Anschauung des Potenzierens und
Wourzelziehens komplexer Zahlen.

Genauso willkiirlich kann man den Raum der linearen Funktionen ax+b so darstel-
len, dass a auf der y-Achse und b auf der x-Achse aufgetragen wird. Den Raum
der quadratischen Polynome cx? + ax + b kann man so darstellen, dass man c auf
der z-Achse auftrdgt. Man kann sich also den Raum der linearen Funktionen als
2-dimensionale Ebene im Raum der quadratischen Funktionen darstellen.

Auch fiir solche Ebenen kann man das Gram-Schmidt-Verfahren anwenden. Dazu
wird willkiirlich festgelegt, wie die Ebene dargestellt wird, zum Beispiel haben wir
fir den Raum der linearen Funktionen vorhin festgelegt, dass die Steigung normal
auf den Schnittpunkt der Funktion mit der y-Achse ist. Das bedeutet, dass das
Skalarprodukt aus Steigung und Schnittpunkt 0 sein muss. Ein Skalarprodukt, dass
diese Bedingung erfiillt, wire zum Beispiel ky ko + dydo. Das hat noch Ahnlichkeiten
mit dem Standardskalarprodukt.
k

Wenn man jedoch den Schnittpunkt der Funktion mit der x-Achse (x = — ) normal

auf den Schnittpunkt mit der y-Achse auftragt, wire das Skalarprodukt % + dida.
Man merkt, dass das Skalarprodukt keine Ahnlichkeit mit dem Standardskalarpro-
dukt haben muss.

Da dieses Skalarprodukt willkiirlich festgelegt wird, muss es in der Angabe vorge-
geben werden. Mit diesem Skalarprodukt kann man das Gram-Schmidt-Verfahren
analog zu den normalen R3umen ausfiihren (schlieRlich werden sie auch analog zu
den normalen Riumen dargestellt). Jetzt wird auch klar, wieso die Verallgemeine-
rung des Gram-Schmidt-Verfahrens auf mehr als 3 Dimensionen Sinn macht: Raume
mit mehr als 3 Variablen kdnnen durchaus als héherdimensionale Rdume dargestellt
werden.

Beispiel

Gegeben ist der Raum der reelen Polynome a-+ bx+cx?+dx3+ ... der von den Funk-
tionen 1,x,x2,x3,... aufgespannt wird. Das Skalarprodukt lautet %fil f(x)g(x)dx.

Bei solchen Beispielen sollte man keine Zeit damit verschwenden, zu versuchen sich
das vorzustellen, sondern einfach nach Schema F losrechnen. Wir beginnen also
damit, den ersten Vektor (in unserem Fall eine Funktion) die den Raum aufspannt
durch Division durch den Betrag zu normieren.

Dabei kommt gleich die erste Falle, denn der Betrag ist durch das Skalarpro-
dukt definiert: Der Betrag ist die Wurzel aus dem Skalarprodukt mit sich selbst
la| = /< a, a >. Diese Definition ist anschaulich klar: Das Skalarprodukt von 3
und b ist der Schatten, des Vektors 3 auf b mal der Linge des Vektors b. Das
Skalarprodukt von 3 und 3 ist daher der Schatten des Vektors 3 auf 3 (also die
Lange von 3) mal der Liange des Vektors 3 (also insgesamt die Lange des Vektors 3
zum Quadrat). Um die Linge des Vektors 3 zu erhalten, muss man also nur noch
die Wurzel ziehen.



Gram-Schmidt-Verfahren

Wir setzen also ins Skalarprodukt %fil f(x)g(x)dx fir f(x) und g(x) unsere erste

Funktion (1) ein und erhalten %fil ldx = (1 — (—1)) = 1. Ziehen der Wurzel
ergibt den Betrag (1) und Division unseres ersten Vektors (1) durch den Betrag (1)
ergibt den ersten Vektor des Orthonormalsystems (1).

Unser zweiter Vektor lautet x. Diesen miissen wir zuerst beziiglich 1 orthogonalisie-
ren. Wir nehmen also das Skalarprodukt von 1 und x, um die Lange des Schattens
von 1 auf x auszurechnen: 3 [* xdx = 3(1 — 1)) = 0. Da das Skalarprodukt 0 ist,
wissen wir, dass x bereits orthogonal auf 1 ist. (Die Lénge des Schattens von x auf

1 ist 0 und wenn man den 0-Vektor abzieht, verandert sich die Funktion nicht.

Der nachste Schritt ist das normieren des Vektors x. Einsetzen des Vektors x in das

Skalarprodukt ergibt %f_ll x?dx = 3(3 — (—3)) = 3- Wurzelziehen ergibt % und

Division durch den Betrag den zweiten Vektor im Orthogonalsystem /3x.

Auf diese Art und Weise kann man weitermachen und beliebig viele Orthonormalvek-
toren bestimmen. Da es sich in dem Fall um einen unendlichdimensionalen Raum
handelt, hat man nie alle Vektoren bestimmt und kann somit nie den gesamten
Raum aufspannen. Dennoch kann man jedes Element des Raumes mit endlich vie-
len Koordinaten angeben. Wenn man also die Koordinaten eines Punktes in diesem
Raum angeben mdchte, kann man die Orthonormalbasis so lange vergréRern, bis
der Punkt erreicht wird und ist nach einer endlichen Zeit fertig.

Alle Angaben in diesem Skriptum sind ohne Gewdhr. Jedes Feedback hilft, die vor-
liegenden und kiinftigen Skripten zu verbessern.


http://www.astronomieskripten.lima-city.de/Atronomieskripten/feedback.htm

