
Gram-Schmidt-Verfahren

2D-Fläche im 3D-Raum
Gegeben ist eine 2-dimensionale Fläche in einem 3-dimensionalen Raum. Man möch-
te Punkte auf dieser Fläche angeben. Das kann man natürlich mit 3-dimensionalen
kartesischen Koordinaten machen. Da alle Punkte auf derselben Fläche liegen, ist
das aber gar nicht notwendig, sondern man kann ein 2-dimensionales kartesisches
Koordinatensystem auf der Fläche definieren und kommt so mit einer Koordinate
weniger aus.

Dass das immer möglich ist, kann man sich leicht klar machen, indem man sich ein
kariertes Blatt Papier vorstellt, wobei die Linien das kartesische Koordinatensystem
darstellen. Man kann dieses Blatt Papier auf jede beliebig ausgerichtete Fläche legen
und die Linien stellen stets ein 2-dimensionales Koordinatensystem auf dieser Fläche
dar.

Sie erfüllen dabei stets zwei Bedingungen:

• Die Linien stehen alle im rechten Winkel aufeinander (Orthogonalität)

• Die Abstände zwischen den Linien sind gleich groß (Normierung)

Man spricht deshalb auch von einem Orthonormalsystem.

Beim Gram-Schmidt-Verfahren versucht man ein solches Orthonormalsystem zu ei-
ner vorgegebenen Fläche zu finden.

Beispiel

Eine 2-dimensionale Fläche wird im 3-dimensionalen Raum von den Koordinaten
~a=(0,3,0) und ~b=(2,2,0) aufgespannt.

Finde mit Hilfe des Gram-Schmidt-Verfahren ein Orthonormalsystem auf dieser Flä-
che!
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Grafische Darstellung der Ausgangslage.
Die Vektoren sind unterschiedlich lang und stehen nicht
im rechten Winkel aufeinander.

Schritt 1: Normieren des Vektors ~a.
Damit der Vektor ~a die Länge 1 hat, muss man
ihn durch seinen Betrag dividieren. Wir erhalten
(0,3,0):3=(0,1,0).

Schritt 2: Orthogonalisieren des Vektors ~b bezüg-
lich ~a.
Damit der Vektor ~b orthogonal auf den Vektor ~a steht,
muss man den Vektor ~c davon abziehen. Dieser Vek-
tor entsprcht dem Schatten von ~b auf ~a, man erhält
die Länge von ~c also indem man das Skalarprodukt
zwischen ~b und dem normierten Vektor ~a bildet. Wir
erhalten (2,2,0)(0,1,0)=2.

Um die Koordinaten von ~c zu erhalten, muss man die
Länge mit der Richtung (normierter Vektor ~a) multipli-
zieren. Wir erhalten 2(0,1,0)=(0,2,0). Subtraktion des
Vektors ~c von ~b ergibt (2,2,0)-(0,2,0)=(2,0,0).

Schritt 3: Normieren des Vektors ~b.
Zu guter Letzt müssen wir noch den Vektor ~b normie-
ren. Wir erhalten (2,0,0):2=(1,0,0). Jetzt bilden ~a und
~b ein Orthonormalsystem.

Zur Probe kann man überprüfen, ob alle Vektoren orthogonal (Das Skalarprodukt
von ~a und ~b ist 0) und normal (Der Betrag von ~a und ~b ist 1) sind.

Dass in unserem Beispiel genau die Standardbasis herauskommt, liegt an der An-
gabe: Darin war unsere Ebene bereits eben (die z-Koordinate war 0), damit der
Vorgang im Skriptum geometrisch dargestellt werden kann. Außerdem ist der Vek-
tor ~a genau auf der y-Achse gelegen. (Wenn wir beispielsweise mit dem Vektor ~b
begonnen hätten, der im 45◦-Winkel zur y-Achse liegt und den Vektor ~a bezüglich
~b orthogonalisiert hätten, wäre das Koordinatensystem um 45◦ gedreht gewesen).

In unserer Anschauung mit dem karierten Papier bedeutet das, dass dieses um 45◦

gedreht auf der Ebene liegt. Das Papier kann auf jeder Ebene mit jeder beliebigen
Drehung liegen, das bedeutet, dass es zu jeder Ebene unendlich viele mögliche

2



Gram-Schmidt-Verfahren

Orthonormalsysteme gibt.

Verallgemeinerung auf mehr Dimensionen
Analog zu den Koordinaten einer 2-dimensionalen Fläche, die von 2 Vektoren im
3-dimensionalen Raum aufgespannt wird, kann man auch die Koordinaten einer
m-dimensionalen Hyperfläche, die von m Vektoren im n-dimensionalen Hyperraum
aufgespannt wird, berechnen. Wozu man mehr als 3 Dimensionen benötigt, wird im
Abschnitt Verallgemeinerung auf abstraktere Räume klar.

Das Verfahren der Normierung und der Orthogonalisierung ist ganz analog wie bei
den 2-dimensionalen Flächen im 3-dimensionalen Raum. Der einzige Unterschied ist,
dass man die Vektoren bezüglich aller bereits ausgerechneter Koordinaten orthogo-
nalisieren muss. Zum Beispiel ist der Vorgang für einen 3-dimensionalen Raum, der
in einem höherdimensionalen Hyperraum aufgespannt ist, so:

1. Normieren von ~c
2. Orthogonalisieren von ~b bezüglich ~c
3. Normieren von ~b
4. Orthogonalisieren von ~a bezüglich ~c
5. Orthogonalisieren von ~a bezüglich ~b
6. Normieren von ~a

Den ersten Vektor muss man daher 0 mal orthogonalisieren, den zweiten 1 mal und
den dritten 2 mal. Den nten Vektor müsste man n-1 mal orthogonalisieren.

Die Vektoren ~a und ~b in dieser Abbildung sind schon
bezüglich dem Vektor ~c , der orthogonal aus dem Skrip-
tum herausragt, normal. Damit das System zur Gänze
orthogonal ist, muss man auch noch den Vektor ~a be-
züglich ~b orthogonalisieren.

Bei der Probe, prüft man das Skalarprodukt jeder Kombination: Es gilt ~a~c = 0,
~b~c = 0, ~b~a = 0. (In der obenstehenden Grafik ist nur die letzte Bedingung nicht
erfüllt.) Für n Dimensionen müsste man also (n-1)! Skalarprodukte überprüfen.

Verallgemeinerung auf abstraktere Räume
In der Mathematik ist es oft praktisch, mathematische Zusammenhänge, die physi-
kalisch nichts mit Dimensionen zu tun haben, trotzdem als n-dimensionale Räume
darzustellen. Beispielsweise werden die komplexen Zahlen ai+b in der Gaußschen
Zahlenebene so dargestellt, dass a auf die y-Achse und b auf die x-Achse aufgetra-
gen wird.

Dass die imaginäre Achse normal auf die reelle Achse steht ist vollkommen will-
kürlich und hat nichts mit der physikalischen Bedeutung einer negativen Wurzel zu
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tun. Dennoch erleichtert diese Darstellung die Anschauung des Potenzierens und
Wurzelziehens komplexer Zahlen.

Genauso willkürlich kann man den Raum der linearen Funktionen ax+b so darstel-
len, dass a auf der y-Achse und b auf der x-Achse aufgetragen wird. Den Raum
der quadratischen Polynome cx2 + ax + b kann man so darstellen, dass man c auf
der z-Achse aufträgt. Man kann sich also den Raum der linearen Funktionen als
2-dimensionale Ebene im Raum der quadratischen Funktionen darstellen.

Auch für solche Ebenen kann man das Gram-Schmidt-Verfahren anwenden. Dazu
wird willkürlich festgelegt, wie die Ebene dargestellt wird, zum Beispiel haben wir
für den Raum der linearen Funktionen vorhin festgelegt, dass die Steigung normal
auf den Schnittpunkt der Funktion mit der y-Achse ist. Das bedeutet, dass das
Skalarprodukt aus Steigung und Schnittpunkt 0 sein muss. Ein Skalarprodukt, dass
diese Bedingung erfüllt, wäre zum Beispiel k1k2+d1d2. Das hat noch Ähnlichkeiten
mit dem Standardskalarprodukt.

Wenn man jedoch den Schnittpunkt der Funktion mit der x-Achse (x = − k
d ) normal

auf den Schnittpunkt mit der y-Achse aufträgt, wäre das Skalarprodukt k1k2
d1d2

+d1d2.
Man merkt, dass das Skalarprodukt keine Ähnlichkeit mit dem Standardskalarpro-
dukt haben muss.

Da dieses Skalarprodukt willkürlich festgelegt wird, muss es in der Angabe vorge-
geben werden. Mit diesem Skalarprodukt kann man das Gram-Schmidt-Verfahren
analog zu den normalen Räumen ausführen (schließlich werden sie auch analog zu
den normalen Räumen dargestellt). Jetzt wird auch klar, wieso die Verallgemeine-
rung des Gram-Schmidt-Verfahrens auf mehr als 3 Dimensionen Sinn macht: Räume
mit mehr als 3 Variablen können durchaus als höherdimensionale Räume dargestellt
werden.

Beispiel

Gegeben ist der Raum der reelen Polynome a+bx+cx2+dx3+... der von den Funk-
tionen 1,x,x2,x3,... aufgespannt wird. Das Skalarprodukt lautet 1

2

∫ 1

−1 f (x)g(x)dx .

Bei solchen Beispielen sollte man keine Zeit damit verschwenden, zu versuchen sich
das vorzustellen, sondern einfach nach Schema F losrechnen. Wir beginnen also
damit, den ersten Vektor (in unserem Fall eine Funktion) die den Raum aufspannt
durch Division durch den Betrag zu normieren.

Dabei kommt gleich die erste Falle, denn der Betrag ist durch das Skalarpro-
dukt definiert: Der Betrag ist die Wurzel aus dem Skalarprodukt mit sich selbst
|a| =

√
< a, a >. Diese Definition ist anschaulich klar: Das Skalarprodukt von ~a

und ~b ist der Schatten, des Vektors ~a auf ~b mal der Länge des Vektors ~b. Das
Skalarprodukt von ~a und ~a ist daher der Schatten des Vektors ~a auf ~a (also die
Länge von ~a) mal der Länge des Vektors ~a (also insgesamt die Länge des Vektors ~a
zum Quadrat). Um die Länge des Vektors ~a zu erhalten, muss man also nur noch
die Wurzel ziehen.
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Wir setzen also ins Skalarprodukt 1
2

∫ 1

−1 f (x)g(x)dx für f(x) und g(x) unsere erste

Funktion (1) ein und erhalten 1
2

∫ 1

−1 1dx = 1
2 (1 − (−1)) = 1. Ziehen der Wurzel

ergibt den Betrag (1) und Division unseres ersten Vektors (1) durch den Betrag (1)
ergibt den ersten Vektor des Orthonormalsystems (1).

Unser zweiter Vektor lautet x. Diesen müssen wir zuerst bezüglich 1 orthogonalisie-
ren. Wir nehmen also das Skalarprodukt von 1 und x, um die Länge des Schattens
von 1 auf x auszurechnen: 1

2

∫ 1

−1 xdx = 1
2 (

1
2 −

1
2 )) = 0. Da das Skalarprodukt 0 ist,

wissen wir, dass x bereits orthogonal auf 1 ist. (Die Länge des Schattens von x auf
1 ist 0 und wenn man den 0-Vektor abzieht, verändert sich die Funktion nicht.

Der nächste Schritt ist das normieren des Vektors x. Einsetzen des Vektors x in das
Skalarprodukt ergibt 1

2

∫ 1

−1 x
2dx = 1

2 (
1
3 − (− 1

3 )) =
1
3 . Wurzelziehen ergibt 1√

3
und

Division durch den Betrag den zweiten Vektor im Orthogonalsystem
√
3x .

Auf diese Art und Weise kann man weitermachen und beliebig viele Orthonormalvek-
toren bestimmen. Da es sich in dem Fall um einen unendlichdimensionalen Raum
handelt, hat man nie alle Vektoren bestimmt und kann somit nie den gesamten
Raum aufspannen. Dennoch kann man jedes Element des Raumes mit endlich vie-
len Koordinaten angeben. Wenn man also die Koordinaten eines Punktes in diesem
Raum angeben möchte, kann man die Orthonormalbasis so lange vergrößern, bis
der Punkt erreicht wird und ist nach einer endlichen Zeit fertig.

Alle Angaben in diesem Skriptum sind ohne Gewähr. Jedes Feedback hilft, die vor-
liegenden und künftigen Skripten zu verbessern.
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