
Matrizen diagonalisieren

Einleitung

Bei diesem Skriptum wird das Verständnis von Räumen und Abbildungen vorausge-
setzt. Diese Begri�e werden im Skriptum �Räume und Abbildungen - Einführung�
erklärt

Alle Angaben in diesem Skriptum sind ohne Gewähr. Jedes Feedback hilft, die vor-
liegenden und künftigen Skripten zu verbessern.

1 Diagonalisierbarkeit

Diagonalisierbare Abbildungen können mit Diagonalmatrizen, also Matrizen die nur
in den Diagonalelementen Werte ungleich 0 haben dargestellt werden.

λ1 0 0
0 λ2 0
0 0 λ3

 (1.1)

Man kann sich diese wie einen Zerrspiegel vorstellen: Die x-Achse wird um den Fak-
tor λ1, die y-Achse um den Faktor λ2 und die z-Achse um den Faktor λ3 verzerrt.
(Wenn alle λ positiv sind, spiegeln die Zerrspiegeln garnicht, wenn mehrere λ ne-
gativ sind, um mehrere Achsen).

Für viele Anwendungen ist eine Diagonalmatrix am praktischsten. Beispielsweise
wenn man eine Abbildung mehrmals anwenden möchte, genügt es, die Diagonal-
werte zu potenzieren, weil man dieselbe Achse immer nur mit demselben Wert
multipliziert.

Bei anderen Matrizen muss man für jede wiederholte Abbildung erneut die Matri-
zenmultiplikation durchführen, weil sich auch andere Achsen auf die Verlängerung
der einen Achse auswirken und diese nach jeder Abbildung eine neue Länge haben.

Oft hat man jedoch eine diagonalisierbare Abbildung, ohne dass eine Diagonalmatrix
angegeben ist, zum Beispiel wenn der Zerrspiegel schief im Vergleich zum Koordina-
tensystem hängt. Wenn man eine derartige Abbildung mehrmals anwenden möchte,
ist es sinnvoll, die Koordinaten so zu drehen, dass sie genauso schief wie der Zerr-
spiegel sind.

Man erhält eine Diagonalmatrix, die dieselbe Abbildung in anderen Koordinaten dar-
stellt. Matrizen, die dieselbe Abbildung in unterschiedlichen Koordinaten darstellen,
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bezeichnet man als �zueinander kongruent�. Das Transformieren der Koordinaten,
sodass eine Matrix diagonal wird, nennt man �Diagonalisierung�.

Wenn man das Ergebnis in den ursprünglichen Koordinaten darstellen möchte, kann
man die Basisvektoren nach dem Potenzieren wieder zurückdrehen.

2 Eigenwerte und Eigenvektoren

Betrachten wir noch einmal den gewöhnlichen Zerrspiegel

λ1 0 0
0 λ2 0
0 0 λ3

 (2.1)

Der Grund warum dieser so schön diagonal ist, ist, dass alle Koordinaten nach der
Abbildung nur gestaucht oder gestreckt werden, nicht jedoch in eine andere Rich-
tung zeigen.

Um eine andere Matrix zu diagonalisieren, muss man daher jene Vektoren ~b �nden,
die nach der Abbildung in die selbe Richtung schauen, das heiÿt, bei denen die
Abbildung a nur dazu führt, dass sie mit einer Zahl λ multipliziert werden.

(
a11 a12
a21 a22

)(
b1
b2

)
= λ

(
b1
b2

)
(2.2)

Entlang dieser Vektoren werden nachher die Koordinaten gelegt. Man bezeichnet
die Vektoren ~b als �Eigenvektoren� und die Werte λ als �Eigenwerte�.

Um die Eigenwerte zu berechnen, muss man das lineare Gleichungssystem nach
λ lösen. Danach kann man dieses λ ins Gleichungssystem einsetzen und das Glei-
chungssystem nach b1 und b2 lösen

Lösen mittels Gauÿ-Jordan-Algorithmus
Genaue Erklärung siehe Skriptum �Lineare Gleichungssysteme lösen�

Im folgenden ist links die Matrizennotation und rechts ist die Darstellung als Glei-
chungssystem

(
a11 a12
a21 a22

)(
b1
b2

)
= λ

(
b1
b2

)
a11b1 + a12b2 = λb1
a21b1 + a22b2 = λb2

1. Subtraktion der rechten Seite führt auf die neue Matrix a-λ11, wobei 11 das Sym-
bol für die Einheitsmatrix ist.

(
a11 − λ a12
a21 a22 − λ

)(
b1
b2

)
=

(
0
0

)
(a11 − λ)b1 + a12b2 = 0
a21b1 + (a22 − λ)b2 = 0
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2. Eliminierung aller Zeilen abgesehen von den Diagonalen liefert

(
det(a− λ11) 0

0 det(a− λ11)

)(
b1
b2

)
=

(
0
0

)
det(a− λ11)b1 = 0
det(a− λ11)b2 = 0

Es gilt b1 6= 0 und b2 6= 0, denn wenn eine der beiden Komponenten 0 wäre, würde
der Eigenvektor genau in Richtung einer Koordinate gehen und die Matrix wäre
schon zu Beginn eine Diagonalmatrix.

Wenn beide Komponenten 0 wären, hätte der Vektor keine Länge und könnte da-
her durch die Abbildung sowieso nicht verändert werden. Er hat jedoch auch keine
Richtung und kann daher keine Koordinate angeben.

Man erhält deshalb alle sinnvollen Lösungen, wenn man durch b1 oder b2 dividiert.
Das führt zur Beziehung det(a-λ11)=0.

Einsetzen des Gleichungssystems in die Formel für die Determinante ergibt für ein
2D-Gleichungssystem eine quadratische Gleichung mit bis zu 2 Lösungen. Diese
kann man mit der Mitternachtsformel berechnen.

Für ein nD-Gleichungssystem erhält man eine Gleichung mit der höchsten Potenz n.
Dafür gibt es zwar im Allgemeinen kein Lösungsverfahren, man kann jedoch (zum
Beispiel mit Hilfe eines Computers) bis zu n Lösungen �nden.

3 Eigenräume

Wenn man die unterschiedlichen Eigenwerte in das Gleichungssystem einsetzt, kann
man die Komponenten b1 und b2 berechnen. Dabei bekommt man jedoch nicht
nur einen Vektor sondern ganz viele. Beispielsweise könnte das Ergebnis für den
Eigenwert λ1 = 3

b1 = b2 (3.1)

lauten. Das bedeutet, dass alle Vektoren, bei denen die b1-Komponente genauso
groÿ wie die b2-Komponente ist, durch die Abbildung mit 3 multipliziert werden,
ohne dass sich die Richtung ändert.

Eine Koordinate muss man folglich so legen, dass sie im 45◦-Winkel genau zwischen
x-Achse und y-Achse durchgeht, damit die Werte auf beiden Achsen gleich groÿ sind.
Die Menge der Vektoren entlang dieser Achse (also die Menge aller Eigenvektoren
zu λ1) bezeichnet man als Eigenraum zum Wert λ1. Man kann sie allgemein mit
der Schreibweise
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k

(
1
1

)
(3.2)

anschreiben, wobei man für k jede beliebige Zahl einsetzen kann. In dieser Darstel-
lung sind alle Vektoren, in denen beide Komponenten gleich sind, enthalten, denn
um einen Vektor zu erreichen, muss man nur k genauso groÿ wie die beiden Kom-
ponenten wählen.

Welche Zahlen man in den Vektor schreibt ist egal, solange beide Gleichung 3.1.
erfüllen. Man kann den Eigenraum beispielsweise genauso mit der Gleichung

k

(
2
2

)
(3.3)

angeben, in dem Fall erreicht man jeden Vektor, wenn k halb so groÿ ist, wie die
Komponenten. Man kann daher für eine Unbekannte jede beliebige Zahl einsetzen.
Die zweite Komponente muss man sich durch Einsetzen der Wahl der anderen Kom-
ponente ausrechnen, damit Gleichung 3.1. erfüllt ist.

Manchmal kann man durch die Wahl einer Komponente nicht alle anderen bestim-
men. Zum Beispiel wenn man auf die Gleichung b1 = b2 + b3 kommt. In dem Fall
sind zwei Komponenten beliebig und der Eigenraum ist zweidimensional (also eine
Fläche). Alle Vektoren auf dieser Fläche werden um einen Eigenwert λ gestreckt
oder gestaucht. Die Koordinaten kann man innerhalb des Eigenraums beliebig wäh-
len.

Zuerst wählt man eine Koordinate, entlang der b2 = 0 gilt. Man erhält b1 = b3.
Entlang dieser Koordinate gehen alle Vektoren, die ein Vielfaches von (1,0,1) sind.
Für b3 = 0 und b2 = 1 erhält man analog den Vektor (1,1,0).

Der Eigenraum wird durch die zwei Vektoren (1,0,1) und (1,1,0) aufgespannt. Jeden
Vektor in diesem Eigenraum erhält man folglich, indem man zuerst beliebig lang
entlang des einen Vektors und dann beliebig lang entlang des anderen Vektors geht.
Allgemein kann man den Eigenraum daher mit der Vektoraddition

k

1
1
0

+ l

1
0
1

 (3.4)

beschreiben.

Allgemein kann man irgendeinen Wert irgendwie wählen. Die dadurch nicht be-
stimmten Werte setzt man 0 und erhält damit den ersten Vektor. Dann nimmt man
einen der noch unbestimmten Werte, setzt für den irgendwas ein und wieder alle
anderen Werte 0 (auch die, die vorher schon bestimmt wurden). Damit erhält man
den zweiten Vektor. Dann nimmt man wieder einen Wert, der noch nie bestimmt
wurde, setzt für den irgendwas ein und alle anderen Werte 0. Das macht man so
lange, bis alle Werte einmal bestimmt wurden. Dann schreibt man alle Vektoren mit
unterschiedlichen Buchstaben davor und Pluszeichen dazwischen und erhält so den
Eigenraum.
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4 Sylvestrischer Trägheitssatz

Wenn man die Einheitsvektoren so wählt, dass sie in dieselbe Richtung wie die Ei-
genvektoren schauen und die Länge 1 ist, wird jede dieser Koordinaten um den
jeweilgen Eigenwert λ gestaucht, in der Diagonale der Abbildungsmatrix stehen da-
her die Eigenwerte und man muss zum mehrmaligen Ausführen der Abbildung nur
die Diagonalwerte potenzieren.

Noch einfacher wird die Aufgabe, wenn man die Einheitsvektoren genauso lang wie
den Betrag der Eigenwerte wählt. Dann sind die Diagonalwerte in den neuen Einhei-
ten genau 1, -1 oder 0, das heiÿt die Werte 1 und 0 bleiben gleich und beim Wert
-1 erhält man für gerade Potenzen den Wert 1 und für ungerade den Wert -1.

Jetzt kann man sich fragen, ob man überhaupt unterschiedlich lange Einheitsvekto-
ren verwenden darf. Da die Vektoren in unterschiedliche Richtungen zeigen, ist das
kein Problem, dass ist so, wie wenn man zuerst 5cm nach rechts und dann 5m nach
oben geht, da muss man auch keine Einheiten umrechnen. Problematisch würde
es erst, wenn man beispielsweise die Länge des gesamten Weges, eine Fläche oder
einen Winkel berechnen würde.

Da wir das nicht vor haben, sondern gleich nach der Potenzierung der Matrix die
Koordinaten zurückdrehen, können wir das schon machen. Wir müssen nur auf-
passen, dass die Koordinatenänderung eindeutig umkehrbar bleibt. (Beispielsweise
dürfen wir nur mit dem Betrag des Eigenwerts und nicht mit dem Eigenwert sel-
ber multiplizieren, denn die Potenzierung eines positiven und eines negativen Werts
ergibt dasselbe, sodass wir beim Zurückdrehen nicht mehr wissen, ob wir mit dem
positiven oder mit dem negativen Wert gerechnet haben.

5 Orthogonalisierung

Wenn man nach der Potenzierung im neuen Koordinatensystem bleiben möchte,
ist es für viele Anwendungen notwendig, dass alle Basisvektoren im rechten Winkel
aufeinander stehen und die Länge 1 haben. Man bezeichnet ein derartiges Koordi-
natensystem als �Orthogonalsystem�.

Damit man das überhaupt erreichen kann, müssen die Zerrachsen des Spiegels al-
le im rechten Winkel aufeinander stehen, dass heiÿt, die Eigenvektoren müssen im
rechten Winkel aufeinander stehen. Das kann man überprüfen, indem man die Ei-
genvektoren miteinander multipliziert und überprüft, ob das Resultat immer 0 ist.

Bei mehrdimensionalen Eigenräumen muss man nur einen beliebigen Vektor inner-
halb dieses Eigenraums mit den anderen Vektoren multiplizieren. Wenn man Flächen
betrachtet, ist das intuitiv klar: Wenn zwei Flächen im rechten Winkel zueinander
stehen, stehen zwei beliebige Linien in je einer der beiden Flächen ebenfalls im rech-
ten Winkel zueinander, weil der Winkelbogen immer von einer Fläche zur anderen
geht. Bei höherdimensionalen Eigenräumen ist das genau so.

Wenn alles orthogonal ist, kann man die eindimensionalen Eigenvektoren durch ihre
Länge dividieren, damit sie den Betrag 1 haben. Innerhalb der mehrdimensionalen
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Eigenräume muss man die Vektoren mit Hilfe des Gram-Schmidt-Verfahrens so le-
gen, dass sie genau orthogonal zueinander sind

Orthogonalisieren mittels Gram-Schmidt-Verfahren
Genaue Erklärung siehe Skriptum �Gram-Schmidt-Verfahren�

1. Normieren des ersten Vektors ~v1: Division durch den Betrag|~v1|
2. Orthogonalisieren des zweiten Vektors bezüglich des ersten Vektors: Subtraktion
des Skalarprodukts ~v1 ~v2 vom zweiten Vektor ~v2
3. Normieren des zweiten Vektors
4. Orthogonalisieren des dritten Vektors bezüglich der bisher berechneten Vektoren
(~v1 und ~v2)

Dieses Verfahren setzt man so lange fort, bis man alle Vektoren innerhalb des Eigen-
raums orthogonalisiert hat. Für jeden weiteren Eigenraum fängt man das Verfahren
von vorne an.

6 Koordinatentransformationen

Um die Koordinaten so zu transformieren, dass die Abbildungsmatrix diagonal wird,
muss man jede Koordinate entlang eines Eigenvektors abbilden. Beispielsweise kann
man den x-Basisvektor auf den ersten Eigenvektor, den y-Basisvektor auf den zwei-
ten Eigenvektor und so weiter abbilden.

Das bedeutet, dass in der ersten Spalte (die die Transformation des x-Basisvektors
angibt) in der Transformationsmatrix der erste Eigenvektor steht. In der zweiten
Spalte steht der zweite Eigenvektor, in der dritten der dritte und so weiter. Welcher
Spalte man welchen Eigenvektor zuordnet bzw. welche Koordinate man auf welchen
Eigenvektor abbildet ist egal.

Wenn man die Eigenvektoren mit dem Gram-Schmidt-Verfahren orthogonalisiert hat
(sodass die Länge 1 ist) stehen in den Diagonalelementen genau die Eigenwerte. Das
muss so sein, denn die Eigenwerte sind ja die Faktoren, um die die Eigenvektoren
gestreckt bzw. gestaucht werden.

Wenn man die Eigenvektoren mit Hilfe des Sylvestrischen Trägheitssatzes gedehnt
oder gestaucht hat (sodass die Länge |λ| ist), stehen in den Diagonalelementen nur
1er, -1er und 0er. (genauso viele 1er wie es positive und genauso viele -1er wie es
negative Eigenwerte gibt).

Nach dem Potenzieren muss man, sofern man die abgebildeten Vektoren in den
ursprünglichen Koordinaten braucht oder mangels Orthogonalität der Eigenräume,
nicht das Gram-Schmidt-Verfahren anwenden konnte, diese wieder in die ursprüng-
liche Basis legen, das heiÿt die Koordinaten wieder zurückdrehen.

Dafür benötigt man die so genannte inverse Transformationsmatrix S−1. (Die No-
tation ist analog wie beim inversen Element der Multiplikation axx−1 = ax1x−1 =
ax0 = a1 = a, bei dem die Zahl a gleich bleibt). In dem Fall handelt es sich bei der
Zahl um die Basis und bei der Multiplikation um die Abbildung. Die Basis soll nach
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Transformation und Rücktransformation gleich bleiben.

Um die inverse Matrix zu berechnen, nutzt man aus, dass die Matrix auch ein linea-
res Gleichungssystem de�niert. Man schreibt links die Transformationsmatrix und
rechts die Einheitsmatrix auf

S11 S12 1 0
S21 S22 0 1

Intuitiv bedeutet das, dass jeder beliebige Vektor (x,y) in der transformierten Basis
(mit den transformierten Basisvektoren) genauso groÿ wie in der Standardbasis (mit
den Basisvektoren (1,0) und (0,1)) ist

(
x
y

)(
T11 T12

T21 T22

)
=

(
x
y

)(
1 0
0 1

)
(6.1)

Man kann dieses Gleichungssystem wie gewohnt mit dem Gauÿ-Jordan-Algorithmus
umformen. Das macht man so lange, bis links die Einheitsmatrix steht.

Das bedeutet, man hat die Einheitsvektoren so umde�niert, dass die linke Matrix
(das ist immer noch unsere Transformation) genau den Einheitsvektoren entspricht.
Die rechte Matrix (die immer noch unserer ursprünglichen Basis entspricht) ist die
ursprüngliche Basis in den neuen Koordinaten und somit die Matrix, die man ver-
wenden muss, um die transformierten Einheitsvektoren wieder in die ursprünglichen
Einheitsvektoren überzuführen (S−1).

Insgesamt hat man die Diagonalmatrix D erreicht, indem man die ursprüngliche
Matrix A mit der Transformationsmatrix S transformiert hat. Um zur ursprünglichen
Matrix zurückzukommen, muss man mit der inversen Transformationsmatrix S−1

zurücktransformieren. Insgesamt kann man A folglich aufteilen in

A = SDS−1 (6.2)

Potenzierung ergibt

An = SDS−1SDS−1...SDS−1 (6.3)

wodurch sich alle Faktoren SS−1 in der Mitte wegheben, sodass man insgesamt die
Formel

A = SDnS−1 (6.4)

erhält.
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7 Komplexe Diagonalisierbarkeit

Wenn man in die komplexe Ebene wechselt, kann man selbst Matrizen diagonali-
sieren, die scheinbar nicht durch Zerrspiegel dargestellt werden können, wie zum
Beispiel Drehungen.

Dazu rechnet man wie in diesem Skriptum für reele Werte beschrieben, bekommt
beim Lösen des Gleichungssystems jedoch nur komplexe Lösungen, was bedeutet,
dass die Zerrachsen nicht wirklich existieren. Bei der Rücktransformation sollten
sich die komplexen Zahlen wieder wegkürzen, sodass man wieder eine Abbildung
zwischen reellen Zahlen hat.

Falls man den Sylvestrischen Trägheitssatz anwenden möchte, kann man weiterhin
nur durch den Betrag von λ dividieren und erhält damit in Polarkoordinaten eine
Zahl in der Form e iφ. Man erspart sich folglich das Potenzieren des Betrags muss
aber weiterhin den Winkel multiplizieren.

Nicht diagonalisierbare Matrizen gibt es trotzdem und zwar dann, wenn die Eigen-
räume zusammen weniger Dimensionen als die Matrix Zeilen hat und man deshalb
nicht ausreichend Eigenvektoren für alle Dimensionen �ndet.

8 Gleichzeitig Diagonalisierbare Matrizen

Manchmal möchte man nicht nur eine Abbildung mehrmals anwenden (Matrix po-
tenzieren) sondern auch unterschiedliche Abbildungen kombinieren (Matrix multi-
plizieren). Dabei kommt man normalerweise nicht um die Matrizenmultiplikation
herum, weil die beiden Matrizen, wenn überhaupt, in unterschiedlichen Basisvektor-
systemen diagonal sind.

Es gibt jedoch auch Ausnahmen: Matrizen, die im gleichen Basisvektorsystem diago-
nal sind, bezeichnet man als gleichzeitig oder simultan diagonalisierbar. Anschaulich
bedeutet das, dass die Zerrspiegeln beider Matrizen genau in die gleiche Richtung
aufgehängt sind und diese daher dieselben Eigenvektoren haben (sie müssen aber
das Bild nicht gleich stark verzerren und können daher unterschiedliche Eigenwerte
haben).

Bei der gleichzeitigen Diagonalisierung muss man die Eigenvektoren nur einmal be-
rechnen, weil die Basisvektoren laut Voraussetzung beide gleich sind. Die Eigenwerte
muss man wie gewohnt für alle Matrizen berechnen.

Gleichzeitig diagonalisierbare Matrizen erkennt man am leichtesten daran, dass sie
immer kommutativ sind. Schlieÿlich macht es keinen Unterschied, ob die Basis-
vektoren zuerst um die Faktoren a bzw. b und dann um die Faktoren c bzw. d
oder umgekehrt gestaucht werden, die Basisvektoren und somit auch alle möglichen
Kombinationen daraus sind nachher gleich.

(
a 0
0 b

)(
c 0
0 d

)
=

(
ac 0
0 bd

)
=

(
c 0
0 d

)(
a 0
0 b

)
(8.1)
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Bei anderen Matrizen, bei dem in jeder Basis nur maximal eine Matrix in Diagonal-
gestalt ist, ist das nicht so

(
a 0
0 b

)(
c d
e f

)
=

(
ac ae
be cf

)
6=
(
ac bd
ae bf

)
=

(
c d
e f

)(
a 0
0 b

)
(8.2)

9 Zusammenfassung

I. Das müsst ihr machen, um Matrizen zu diagonalisieren (Seiten 2 - 3):

1. λ11 von der Matrix a abziehen

2. Die Determinante der resultierenden Matrix mit 0 gleichsetzen und nach λ
au�ösen

3. Die Eigenwerte λ nacheinander in die Diagonale schreiben

II. Das müsst ihr machen, um Eigenvektoren zu berechnen (Seiten 3 - 4):

1. Einsetzen eines λ in det(a-λ11)bi=0 für jede Koordinate i

2. Lösen des Gleichungssystems

3. Ein bi gleich 1 setzen, die anderen bj durch Einsetzen von bi in die Lösung
des Gleichungssystems bestimmen

4. Wenn nicht alle bj bestimmt werden können ein bj=0 setzen. Diesen Schritt
so lange wiederholen bis alle Vektorkomponenten bestimmt sind. Alle Vektor-
komponenten zusammen ergeben einen Eigenvektor

5. Die Schritte 3 und 4 für alle in Schritt 4 mit 0 gleichgesetzten bj wiederholen.
Das ergibt weitere Eigenvektoren desselben Eigenraumes

6. Eine Linearkombination aller Eigenvektoren zur Angabe des Eigenraumes auf-
schreiben

7. Alle Schritte für alle weiteren λ wiederholen

III. Das müsst ihr machen, um Matrizen im bestehenden Koordinatensystem
zu potenzieren (Seiten 2 - 8):

1. Matrix diagonalisieren (siehe I)

2. Jede Zeile durch |λ| dividieren

3. Die Diagonaleinträge der Matrix potenzieren

4. Berechnung der Eigenvektoren (siehe II)

5. Division der Eigenvektoren durch ihren Betrag

6. Multiplikation der normierten Eigenvektoren mit |λ|

7. Aufstellen der Transformationsmatrix durch Untereinanderschreibung der Ei-
genvektoren mit Länge λ
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8. Aufstellen der inversen Transformationsmatrix durch Gleichsetzung der Trans-
formationsmatrix mit der Einheitsmatrix und Umkehrung des Gleichungssys-
tems

9. Rücktransformation durch Einsetzen in die Formel An = SDnS−1

IV. Das müsst ihr machen, um Matrizen in einem neuen Koordinatensystem
zu potenzieren (Seiten 2 - 3):

1. Matrix diagonalisieren (siehe I)

2. Die Diagonaleinträge der Matrix potenzieren

3. Falls man andere Vektoren oder Matrizen in dieses neue Koordinatensystem
holen möchte, muss man eine Transformationsmatrix berechnen (siehe V)

V. Das müsst ihr machen, um die Transformationsmatrix in ein neues Koor-
dinatensystem zu bestimmen (Seiten 2 - 8)
Man möchte eine Transformationsmatrix berechnen, in der eine Matrix eine Diago-
nalgestalt hat (siehe IV.3)

1. Berechnung der Eigenvektoren durch Einsetzen aller λ und Lösen der Glei-
chungssysteme

2. Orthogonalität der Eigenräume überprüfen. Falls sie nicht orthogonal sind,
muss man die Matrix im bestehenden Koordinatensystem potenzieren

3. Orthogonalisieren der Vektoren in den Eigenräumen mit dem Gram-Schmidt-
Verfahren. Nicht auf das Normieren der Vektoren in 1D-Eigenräumen verges-
sen!

4. Aufstellen der Transformationsmatrix durch untereinanderschreiben der ortho-
gonalisierten Eigenvektoren

5. Alle Vektoren, auf die man die potenzierte Matrix anwenden möchte durch
Multiplikation mit der Transformationsmatrix transformieren

10 Übungsaufgaben

1. Diagonalisiere die 2-dimensionale Drehmatrix mit dem Winkel π
8

2. Potenziere diese Drehmatrix im bestehenden Koordinatensystem mit 8
3. Potenziere diese Drehmatrix im neuen Koordinatensystem mit 8
4. Berechne die Transformationsmatrix ins neue Koordinatensystem aus Aufgabe 3
5. Überlege dir welche Matrizen mit dieser Drehmatrix gleichzeitig diagonalisierbar
sind.
6. Überlege dir die physikalische Bedeutung von Diagonalmatrizen mit 2 komplex
konjugierten Eigenwerten

Tipps für alle Übungsaufgaben: Verwende die Eulerschen Formeln cosφ+ isinφ =
e iφ, cosφ− isinφ = e−iφ und den Pythagoras cos2φ+ sin2φ = 1

10
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11 Lösungen

Aufgabe 1

Die Drehmatrix um den Winkel π
8 lautet

(
cos(π8 ) −sin(π8 )
sin(π8 ) cos(π8 )

)
(11.1)

Subtraktion von λ11

(
cos(π8 )− λ −sin(π8 )

sin(π8 ) cos(π8 )− λ

)
(11.2)

Gleichsetzen der Determinante mit 0

(cos(
π

8
)− λ)2 + sin2(

π

8
) = 0 (11.3)

Ausmultiplizieren

cos2(
π

8
)− 2λcos(

π

8
) + λ2 + sin2(

π

8
) = 0 (11.4)

Ausnützen der Formel cos2φ+ sin2φ = 1

1− 2λcos(
π

8
) + λ2 = 0 (11.5)

Lösen der quadratischen Gleichung mit der Mitternachtsformel

λ = cos(
π

8
)±

√
cos2(

π

8
)− 1 (11.6)

Einsetzen der Formel 1 = cos2φ+ sin2φ

λ = cos(
π

8
)±

√
cos2(

π

8
)− cos2(

π

8
)− sin2(

π

8
) (11.7)

Kürzen des Cosinus und Wurzel ziehen

λ = cos(
π

8
)± isin(

π

8
) (11.8)

Vereinfachen mit der Eulerschen Formel

λ = e±i(π
8 ) (11.9)

Die Diagonalmatrix lautet folglich

(
e i(

π
8 ) 0
0 e−i(π

8 )

)
(11.10)
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Aufgabe 2

Die Diagonalmatrix ist bereits aus Beispiel 1 bekannt.

Der Betrag der Eigenwerte ist bereits 1 (in Polardarstellung ist der Betrag die Zahl
vor dem Exponenten. Da dort keine steht, ist sie 1). Potenzierung mit 8 erfolgt
durch Multiplikation des Exponenten mit 8

(
e iπ 0
0 e−iπ

)
(11.11)

Vereinfachung der Matrix mit der Formel e iφ = cosφ + isinφ bzw. e−iφ = cosφ −
isinφ und den Beziehungen cosπ = −1 und sinπ = 0

(
−1 0
0 −1

)
(11.12)

Berechnung des ersten Eigenvektors durch Einsetzen von λ = e i
π
8

(
cos(π8 )− e i

π
8 −sin(π8 )

sin(π8 ) cos(π8 )− e i
π
8

)(
b1
b2

)
= 0 (11.13)

Einsetzen der Eulerschen Formel e iφ = cosφ+ isinφ und kürzen des Cosinus

(
−isin(π8 ) −sin(π8 )
sin(π8 ) −isin(π8 )

)(
b1
b2

)
= 0 (11.14)

Division durch sin(π8 )

(
−i −1
1 −i

)(
b1
b2

)
= 0 (11.15)

Multiplikation der ersten Zeile mit i

(
1 −i
1 −i

)(
b1
b2

)
= 0 (11.16)

Addition der zweiten Zeile zur ersten Zeile

(
0 0
1 −i

)(
b1
b2

)
= 0 (11.17)

Ausmultiplizieren des Gleichungssystems

b1 − ib2 = 0⇒ b1 = ib2 (11.18)

Willkürliches einsetzen von b2 = 1 ergibt b1 = i und damit den Eigenraum

12



Räume und Abbildungen Matrizen diagonalisieren

k

(
i
1

)
(11.19)

Berechnung des zweiten Eigenvektors durch Einsetzen von λ = e−i π8

(
cos(π8 )− e−i π8 −sin(π8 )

sin(π8 ) cos(π8 )− e−i π8

)(
b1
b2

)
= 0 (11.20)

Einsetzen der Eulerschen Formel e iφ = cosφ− isinφ und kürzen des Cosinus

(
isin(π8 ) −sin(π8 )
sin(π8 ) isin(π8 )

)(
b1
b2

)
= 0 (11.21)

Division durch sin(π8 )

(
i −1
1 i

)(
b1
b2

)
= 0 (11.22)

Multiplikation der ersten Zeile mit i

(
−1 −i
1 i

)(
b1
b2

)
= 0 (11.23)

Addition der zweiten Zeile zur ersten Zeile

(
0 0
1 i

)(
b1
b2

)
= 0 (11.24)

Ausmultiplizieren des Gleichungssystems

b1 + ib2 = 0⇒ b1 = −ib2 (11.25)

Willkürliches einsetzen von b2 = 1 ergibt b1 = −i und damit den Eigenraum

l

(
−i
1

)
(11.26)

Beim Betrag der komplexen Zahlen muss man aufpassen: Da die Länge in der
komplexen Ebene positiv ist (der Betrag der komplexen Zahl) ist der Gesamtbetrag
des Vektors auch positiv (Genaue Erklärung siehe Skriptum �Euklidische und unitäre
Räume�).

√
12 + |i |2 =

√
2 (11.27)
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Räume und Abbildungen Matrizen diagonalisieren

Division durch
√
2 ergibt die normierten Eigenvektoren mit Betrag 1. Da die Ei-

genwerte ebenfalls den Betrag 1 haben, muss man nicht mehr weiter multiplizieren
sondern kann gleich die Transformationsmatrix aufstellen.

1√
2

(
i 1
−i 1

)
(11.28)

Berechnen der Rücktransformation durch Multiplikation mit
√
2

i -i
√
2 0

1 1 0
√
2

Multiplikation der ersten Zeile mit i

-1 1 i
√
2 0

1 1 0
√
2

Subtraktion der zweiten Zeile von der ersten Zeile und Addition der ersten Zeile zur
zweiten Zeile

-2 0 i
√
2 −

√
2

0 2 i
√
2

√
2

Division der ersten Zeile durch -2 und der zweiten Zeile durch 2 führt auf die
Rücktransformation

1

2
√
2

(
−i 1
i 1

)
(11.29)

Einsetzen in die Formel An = SDnS−1

1√
2

(
i 1
−i 1

)(
−1 0
0 −1

)
1

2
√
2

(
−i 1
i 1

)
(11.30)

Ausmultiplizieren führt auf die Drehmatrix um den Winkel π (Spiegelung beider
Achsen)

(
−1 0
0 −1

)
(11.31)

Das ist auch das erwartete Ergebnis, denn wenn man den Raum acht mal um den
Winkel π

8 dreht, hat man ihn insgesamt um den Winkel π gedreht.

Aufgabe 3

Die Diagonalmatrix ist bereits aus Beispiel 1 bekannt. Potenzierung mit 8 erfolgt
durch Multiplikation der Exponenten mit 8.

14



Räume und Abbildungen Matrizen diagonalisieren

(
e iπ 0
0 e−iπ

)
(11.32)

Vereinfachung der Matrix mit der Formel e iφ = cosφ + isinφ bzw. e−iφ = cosφ −
isinφ und den Beziehungen cosπ = −1 und sinπ = 0

(
−1 0
0 −1

)
(11.33)

Aufgabe 4

Berechnung des ersten Eigenvektors durch Einsetzen von λ = e i
π
8

(
cos(π8 )− e i

π
8 −sin(π8 )

sin(π8 ) cos(π8 )− e i
π
8

)(
b1
b2

)
= 0 (11.34)

Einsetzen der Eulerschen Formel e iφ = cosφ+ isinφ und kürzen des Cosinus

(
−isin(π8 ) −sin(π8 )
sin(π8 ) −isin(π8 )

)(
b1
b2

)
= 0 (11.35)

Division durch sin(π8 )

(
−i −1
1 −i

)(
b1
b2

)
= 0 (11.36)

Multiplikation der ersten Zeile mit i

(
1 −i
1 −i

)(
b1
b2

)
= 0 (11.37)

Addition der zweiten Zeile zur ersten Zeile

(
0 0
1 −i

)(
b1
b2

)
= 0 (11.38)

Ausmultiplizieren des Gleichungssystems

b1 − ib2 = 0⇒ b1 = ib2 (11.39)

Willkürliches einsetzen von b2 = 1 ergibt b1 = i und damit den Eigenraum

k

(
i
1

)
(11.40)
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Berechnung des zweiten Eigenvektors durch Einsetzen von λ = e−i π8

(
cos(π8 )− e−i π8 −sin(π8 )

sin(π8 ) cos(π8 )− e−i π8

)(
b1
b2

)
= 0 (11.41)

Einsetzen der Eulerschen Formel e iφ = cosφ− isinφ und kürzen des Cosinus

(
isin(π8 ) −sin(π8 )
sin(π8 ) isin(π8 )

)(
b1
b2

)
= 0 (11.42)

Division durch sin(π8 )

(
i −1
1 i

)(
b1
b2

)
= 0 (11.43)

Multiplikation der ersten Zeile mit i

(
−1 −i
1 i

)(
b1
b2

)
= 0 (11.44)

Addition der zweiten Zeile zur ersten Zeile

(
0 0
1 i

)(
b1
b2

)
= 0 (11.45)

Ausmultiplizieren des Gleichungssystems

b1 + ib2 = 0⇒ b1 = −ib2 (11.46)

Willkürliches einsetzen von b2 = 1 ergibt b1 = −i und damit den Eigenraum

l

(
−i
1

)
(11.47)

Da es keine mehrdimensionalen Eigenräume gibt, entfällt das Prüfen der Orthogo-
nalität dieser Eigenräume.

Um die Orthogonalität der Eigenvektoren zu prüfen, benötigt man das komplexe
Skalarprodukt, bei dem einer der beiden Faktoren komplex konjugiert ist (Genaue
Erklärung siehe Skriptum �Euklidische und Unitäre Räume�)

(
i
1

)(
i
1

)
= 0 (11.48)

Da die Vektoren schon orthogonal sind, muss man diese nur noch durch ihren Betrag
dividieren um ein Orthogonalsystem zu erhalten. Dabei benutzt man den komplexen
Betrag, der als Wurzel aus dem komplexe Skalarprodukt mit sich selbst de�niert ist.
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(
i
1

)(
−i
1

)
= 2 (11.49)

Folglich muss man die Eigenvektoren durch
√
2 dividieren und die Transformations-

matrix lautet:

1√
2

(
i 1
−i 1

)
(11.50)

Das Koordinatensystem, das man mit dieser Transformation erreicht, liegt genau so,
dass die Spiegelachse auf der x-Koordinate liegt, sodass die Spiegelmatrix einfach
ist.

Aufgabe 5

Alle Matrizen die zusätzlich zur Drehung um π
8 eine Dehnung oder Stauchung

auslösen, verlängern ebenfalls die selben Achsen. Es sind daher physikalisch gesehen
alle Matrizen, bei denen die beiden Diagonaleinträge mit unterschiedlichen reellen
Zahlen a, b multipliziert werden.

(
ae i(

π
8 ) 0

0 be−i(π
8 )

)
(11.51)

Mathematisch gesehen kann man diese Matrizen auch anders darstellen, wenn man
das Koordinatensystem anders legt. Sie beschreiben dann aber dennoch immer die-
selbe Drehung.

Aufgabe 6

Matrizen mit komplex konjugierten Diagonaleinträgen ze iφ und ze−iφ beschreiben
Drehungen um den Winkel φ und Vergröÿerung bzw. Verkleinerung mit dem Faktor
z.

Das kann man sich überlegen, weil man durch Potenzierung der Matrix aus Beispiel
1 mit 8φ

π und Multiplikation mit z jede beliebige Zahl ze iφ in den Diagonaleinträgen
erreichen kann.

Potenzierung bedeutet, dass man die Drehung beliebig oft hintereinander ausführt,
bzw. bei Kommazahlen nur Teile der Drehung. Multiplikation mit z bedeutet, dass
beide Achsen um den Faktor z gedehnt bzw. gestaucht werden, sodass das gesamte
System um den Faktor z vergröÿert bzw. verkleinert wird.
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