Matrizen diagonalisieren

Einleitung

Bei diesem Skriptum wird das Verstdndnis von Rdumen und Abbildungen vorausge-
setzt. Diese Begriffe werden im Skriptum ,RGume und Abbildungen - Einfiihrung'
erklart

Alle Angaben in diesem Skriptum sind ohne Gewshr. Jedes Feedback hilft, die vor-
liegenden und kiinftigen Skripten zu verbessern.
1 Diagonalisierbarkeit

Diagonalisierbare Abbildungen kdnnen mit Diagonalmatrizen, also Matrizen die nur
in den Diagonalelementen Werte ungleich 0 haben dargestellt werden.

AL 00
0 X 0 (1.1)
0 0 As

Man kann sich diese wie einen Zerrspiegel vorstellen: Die x-Achse wird um den Fak-
tor A1, die y-Achse um den Faktor )\, und die z-Achse um den Faktor A3 verzerrt.
(Wenn alle X\ positiv sind, spiegeln die Zerrspiegeln garnicht, wenn mehrere \ ne-
gativ sind, um mehrere Achsen).

Fiir viele Anwendungen ist eine Diagonalmatrix am praktischsten. Beispielsweise
wenn man eine Abbildung mehrmals anwenden mochte, geniigt es, die Diagonal-
werte zu potenzieren, weil man dieselbe Achse immer nur mit demselben Wert
multipliziert.

Bei anderen Matrizen muss man fiir jede wiederholte Abbildung erneut die Matri-
zenmultiplikation durchfiihren, weil sich auch andere Achsen auf die Verldngerung
der einen Achse auswirken und diese nach jeder Abbildung eine neue Linge haben.

Oft hat man jedoch eine diagonalisierbare Abbildung, ohne dass eine Diagonalmatrix
angegeben ist, zum Beispiel wenn der Zerrspiegel schief im Vergleich zum Koordina-
tensystem hingt. Wenn man eine derartige Abbildung mehrmals anwenden mochte,
ist es sinnvoll, die Koordinaten so zu drehen, dass sie genauso schief wie der Zerr-
spiegel sind.

Man erhilt eine Diagonalmatrix, die dieselbe Abbildung in anderen Koordinaten dar-
stellt. Matrizen, die dieselbe Abbildung in unterschiedlichen Koordinaten darstellen,
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bezeichnet man als ,zueinander kongruent”. Das Transformieren der Koordinaten,
sodass eine Matrix diagonal wird, nennt man ,Diagonalisierung".

Wenn man das Ergebnis in den urspriinglichen Koordinaten darstellen mochte, kann
man die Basisvektoren nach dem Potenzieren wieder zuriickdrehen.

2 Eigenwerte und Eigenvektoren

Betrachten wir noch einmal den gewdhnlichen Zerrspiegel

A 00
0 X 0 (2.1)
0 0 A

Der Grund warum dieser so schon diagonal ist, ist, dass alle Koordinaten nach der
Abbildung nur gestaucht oder gestreckt werden, nicht jedoch in eine andere Rich-
tung zeigen.

Um eine andere Matrix zu diagonalisieren, muss man daher jene Vektoren b finden,

die nach der Abbildung in die selbe Richtung schauen, das heifft, bei denen die
Abbildung a nur dazu fiihrt, dass sie mit einer Zahl A multipliziert werden.

an awn) (b by
=A 2.2
(321 322) <b2> (bz) (2:2)
Entlang dieser Vektoren werden nachher die Koordinaten gelegt. Man bezeichnet
die Vektoren b als , Eigenvektoren” und die Werte A als ,Eigenwerte".

Um die Eigenwerte zu berechnen, muss man das lineare Gleichungssystem nach
A 16sen. Danach kann man dieses A ins Gleichungssystem einsetzen und das Glei-

chungssystem nach by und b, l6sen

Losen mittels GauB-Jordan-Algorithmus
Genaue Erklarung siehe Skriptum ,Lineare Gleichungssysteme 16sen”

Im folgenden ist links die Matrizennotation und rechts ist die Darstellung als Glei-
chungssystem

ain aw) (b _ \ by au b + anby = Ab;
a1 axn/ \b bo anib + axby = Aby

1. Subtraktion der rechten Seite fiihrt auf die neue Matrix a-All, wobei 1 das Sym-
bol fiir die Einheitsmatrix ist.

an—AXA  an b\ _ (0 (a11 — A)b1 + 2120 =0
a1 an — A/ \ b 0 an by + (a2 — A\)bp =0
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2. Eliminierung aller Zeilen abgesehen von den Diagonalen liefert
det(a — A1) 0 b1\ (0 det(a— A\1)b; =0
0 det(a—A1)) \by) \O det(a— A\1)b, =0

Es gilt by # 0 und by # 0, denn wenn eine der beiden Komponenten 0 wére, wiirde
der Eigenvektor genau in Richtung einer Koordinate gehen und die Matrix wire
schon zu Beginn eine Diagonalmatrix.

Wenn beide Komponenten 0 waren, hitte der Vektor keine Linge und kdnnte da-
her durch die Abbildung sowieso nicht verdndert werden. Er hat jedoch auch keine
Richtung und kann daher keine Koordinate angeben.

Man erhilt deshalb alle sinnvollen Lésungen, wenn man durch by oder b, dividiert.
Das fiihrt zur Beziehung det(a-\1)=0.

Einsetzen des Gleichungssystems in die Formel fiir die Determinante ergibt fiir ein
2D-Gleichungssystem eine quadratische Gleichung mit bis zu 2 Ldsungen. Diese
kann man mit der Mitternachtsformel berechnen.

Fiir ein nD-Gleichungssystem erhilt man eine Gleichung mit der hochsten Potenz n.
Dafiir gibt es zwar im Allgemeinen kein Lésungsverfahren, man kann jedoch (zum
Beispiel mit Hilfe eines Computers) bis zu n Lésungen finden.

3 Eigenrdume

Wenn man die unterschiedlichen Eigenwerte in das Gleichungssystem einsetzt, kann
man die Komponenten b; und b, berechnen. Dabei bekommt man jedoch nicht
nur einen Vektor sondern ganz viele. Beispielsweise kdnnte das Ergebnis fiir den
Eigenwert A\; =3

by = by (3.1)

lauten. Das bedeutet, dass alle Vektoren, bei denen die b;-Komponente genauso
groB wie die by-Komponente ist, durch die Abbildung mit 3 multipliziert werden,
ohne dass sich die Richtung andert.

Eine Koordinate muss man folglich so legen, dass sie im 45°-Winkel genau zwischen
x-Achse und y-Achse durchgeht, damit die Werte auf beiden Achsen gleich groR sind.
Die Menge der Vektoren entlang dieser Achse (also die Menge aller Eigenvektoren
zu A1) bezeichnet man als Eigenraum zum Wert A;. Man kann sie allgemein mit
der Schreibweise
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p G) (3.2)

anschreiben, wobei man fiir k jede beliebige Zahl einsetzen kann. In dieser Darstel-
lung sind alle Vektoren, in denen beide Komponenten gleich sind, enthalten, denn
um einen Vektor zu erreichen, muss man nur k genauso groR wie die beiden Kom-
ponenten wahlen.

Welche Zahlen man in den Vektor schreibt ist egal, solange beide Gleichung 3.1.
erfiillen. Man kann den Eigenraum beispielsweise genauso mit der Gleichung

p <§> (3.3)

angeben, in dem Fall erreicht man jeden Vektor, wenn k halb so grol ist, wie die
Komponenten. Man kann daher fiir eine Unbekannte jede beliebige Zahl einsetzen.
Die zweite Komponente muss man sich durch Einsetzen der Wahl der anderen Kom-
ponente ausrechnen, damit Gleichung 3.1. erfiillt ist.

Manchmal kann man durch die Wahl einer Komponente nicht alle anderen bestim-
men. Zum Beispiel wenn man auf die Gleichung by = by + b3 kommt. In dem Fall
sind zwei Komponenten beliebig und der Eigenraum ist zweidimensional (also eine
Fliche). Alle Vektoren auf dieser Fliche werden um einen Eigenwert A\ gestreckt
oder gestaucht. Die Koordinaten kann man innerhalb des Eigenraums beliebig wah-
len.

Zuerst wahlt man eine Koordinate, entlang der b, = 0 gilt. Man erhilt b; = b3.
Entlang dieser Koordinate gehen alle Vektoren, die ein Vielfaches von (1,0,1) sind.
Fiir b3 = 0 und b, = 1 erhilt man analog den Vektor (1,1,0).

Der Eigenraum wird durch die zwei Vektoren (1,0,1) und (1,1,0) aufgespannt. Jeden
Vektor in diesem Eigenraum erhilt man folglich, indem man zuerst beliebig lang
entlang des einen Vektors und dann beliebig lang entlang des anderen Vektors geht.
Allgemein kann man den Eigenraum daher mit der Vektoraddition

1 1
k1) +1/10 (3.4)
0 1
beschreiben.

Allgemein kann man irgendeinen Wert irgendwie wahlen. Die dadurch nicht be-
stimmten Werte setzt man 0 und erhilt damit den ersten Vektor. Dann nimmt man
einen der noch unbestimmten Werte, setzt fiir den irgendwas ein und wieder alle
anderen Werte 0 (auch die, die vorher schon bestimmt wurden). Damit erh3lt man
den zweiten Vektor. Dann nimmt man wieder einen Wert, der noch nie bestimmt
wurde, setzt fiir den irgendwas ein und alle anderen Werte 0. Das macht man so
lange, bis alle Werte einmal bestimmt wurden. Dann schreibt man alle Vektoren mit
unterschiedlichen Buchstaben davor und Pluszeichen dazwischen und erhilt so den
Eigenraum.
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4 Sylvestrischer Tragheitssatz

Wenn man die Einheitsvektoren so wihlt, dass sie in dieselbe Richtung wie die Ei-
genvektoren schauen und die Linge 1 ist, wird jede dieser Koordinaten um den
jeweilgen Eigenwert )\ gestaucht, in der Diagonale der Abbildungsmatrix stehen da-
her die Eigenwerte und man muss zum mehrmaligen Ausfiihren der Abbildung nur
die Diagonalwerte potenzieren.

Noch einfacher wird die Aufgabe, wenn man die Einheitsvektoren genauso lang wie
den Betrag der Eigenwerte wahlt. Dann sind die Diagonalwerte in den neuen Einhei-
ten genau 1, -1 oder 0, das heifit die Werte 1 und 0 bleiben gleich und beim Wert
-1 erhélt man fiir gerade Potenzen den Wert 1 und fiir ungerade den Wert -1.

Jetzt kann man sich fragen, ob man iiberhaupt unterschiedlich lange Einheitsvekto-
ren verwenden darf. Da die Vektoren in unterschiedliche Richtungen zeigen, ist das
kein Problem, dass ist so, wie wenn man zuerst 5cm nach rechts und dann 5m nach
oben geht, da muss man auch keine Einheiten umrechnen. Problematisch wiirde
es erst, wenn man beispielsweise die Linge des gesamten Weges, eine Fliche oder
einen Winkel berechnen wiirde.

Da wir das nicht vor haben, sondern gleich nach der Potenzierung der Matrix die
Koordinaten zuriickdrehen, kdnnen wir das schon machen. Wir miissen nur auf-
passen, dass die Koordinatenanderung eindeutig umkehrbar bleibt. (Beispielsweise
diirfen wir nur mit dem Betrag des Eigenwerts und nicht mit dem Eigenwert sel-
ber multiplizieren, denn die Potenzierung eines positiven und eines negativen Werts
ergibt dasselbe, sodass wir beim Zuriickdrehen nicht mehr wissen, ob wir mit dem
positiven oder mit dem negativen Wert gerechnet haben.

5 Orthogonalisierung

Wenn man nach der Potenzierung im neuen Koordinatensystem bleiben mdchte,
ist es fiir viele Anwendungen notwendig, dass alle Basisvektoren im rechten Winkel
aufeinander stehen und die Linge 1 haben. Man bezeichnet ein derartiges Koordi-
natensystem als ,Orthogonalsystem”.

Damit man das iiberhaupt erreichen kann, miissen die Zerrachsen des Spiegels al-
le im rechten Winkel aufeinander stehen, dass heift, die Eigenvektoren miissen im
rechten Winkel aufeinander stehen. Das kann man iberpriifen, indem man die Ei-
genvektoren miteinander multipliziert und iiberpriift, ob das Resultat immer 0 ist.

Bei mehrdimensionalen Eigenrdumen muss man nur einen beliebigen Vektor inner-
halb dieses Eigenraums mit den anderen Vektoren multiplizieren. Wenn man Flachen
betrachtet, ist das intuitiv klar: Wenn zwei Flachen im rechten Winkel zueinander
stehen, stehen zwei beliebige Linien in je einer der beiden Flachen ebenfalls im rech-
ten Winkel zueinander, weil der Winkelbogen immer von einer Fliche zur anderen
geht. Bei hoherdimensionalen Eigenrdumen ist das genau so.

Wenn alles orthogonal ist, kann man die eindimensionalen Eigenvektoren durch ihre
Lange dividieren, damit sie den Betrag 1 haben. Innerhalb der mehrdimensionalen
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Eigenrdume muss man die Vektoren mit Hilfe des Gram-Schmidt-Verfahrens so le-
gen, dass sie genau orthogonal zueinander sind

Orthogonalisieren mittels Gram-Schmidt-Verfahren
Genaue Erkldrung siehe Skriptum ,,Gram-Schmidt-Verfahren™

1. Normieren des ersten Vektors vi: Division durch den Betrag|vi |

2. Orthogonalisieren des zweiten Vektors beziiglich des ersten Vektors: Subtraktion
des Skalarprodukts viv5 vom zweiten Vektor v5

3. Normieren des zweiten Vektors

4. Orthogonalisieren des dritten Vektors beziiglich der bisher berechneten Vektoren
(vi und v3)

Dieses Verfahren setzt man so lange fort, bis man alle Vektoren innerhalb des Eigen-
raums orthogonalisiert hat. Fiir jeden weiteren Eigenraum fangt man das Verfahren
von vorne an.

6 Koordinatentransformationen

Um die Koordinaten so zu transformieren, dass die Abbildungsmatrix diagonal wird,
muss man jede Koordinate entlang eines Eigenvektors abbilden. Beispielsweise kann
man den x-Basisvektor auf den ersten Eigenvektor, den y-Basisvektor auf den zwei-
ten Eigenvektor und so weiter abbilden.

Das bedeutet, dass in der ersten Spalte (die die Transformation des x-Basisvektors
angibt) in der Transformationsmatrix der erste Eigenvektor steht. In der zweiten
Spalte steht der zweite Eigenvektor, in der dritten der dritte und so weiter. Welcher
Spalte man welchen Eigenvektor zuordnet bzw. welche Koordinate man auf welchen
Eigenvektor abbildet ist egal.

Wenn man die Eigenvektoren mit dem Gram-Schmidt-Verfahren orthogonalisiert hat
(sodass die Lange 1 ist) stehen in den Diagonalelementen genau die Eigenwerte. Das
muss so sein, denn die Eigenwerte sind ja die Faktoren, um die die Eigenvektoren
gestreckt bzw. gestaucht werden.

Wenn man die Eigenvektoren mit Hilfe des Sylvestrischen Trigheitssatzes gedehnt
oder gestaucht hat (sodass die Linge |\ ist), stehen in den Diagonalelementen nur
ler, -ler und Oer. (genauso viele ler wie es positive und genauso viele -ler wie es
negative Eigenwerte gibt).

Nach dem Potenzieren muss man, sofern man die abgebildeten Vektoren in den
urspriinglichen Koordinaten braucht oder mangels Orthogonalitdt der Eigenraume,
nicht das Gram-Schmidt-Verfahren anwenden konnte, diese wieder in die urspriing-
liche Basis legen, das heillt die Koordinaten wieder zuriickdrehen.

Dafiir bendtigt man die so genannte inverse Transformationsmatrix S~1. (Die No-
tation ist analog wie beim inversen Element der Multiplikation axx™! = ax'x™! =
ax® = al = a, bei dem die Zahl a gleich bleibt). In dem Fall handelt es sich bei der

Zahl um die Basis und bei der Multiplikation um die Abbildung. Die Basis soll nach
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Transformation und Riicktransformation gleich bleiben.

Um die inverse Matrix zu berechnen, nutzt man aus, dass die Matrix auch ein linea-
res Gleichungssystem definiert. Man schreibt links die Transformationsmatrix und
rechts die Einheitsmatrix auf

Si S |1 O
So1 S22 |0 1

Intuitiv bedeutet das, dass jeder beliebige Vektor (x,y) in der transformierten Basis
(mit den transformierten Basisvektoren) genauso groR wie in der Standardbasis (mit
den Basisvektoren (1,0) und (0,1)) ist

X T11 T12 X 1 0
= 6.1
G ) -C)6 9) 6
Man kann dieses Gleichungssystem wie gewohnt mit dem GauB-Jordan-Algorithmus
umformen. Das macht man so lange, bis links die Einheitsmatrix steht.

Das bedeutet, man hat die Einheitsvektoren so umdefiniert, dass die linke Matrix
(das ist immer noch unsere Transformation) genau den Einheitsvektoren entspricht.
Die rechte Matrix (die immer noch unserer urspriinglichen Basis entspricht) ist die
urspriingliche Basis in den neuen Koordinaten und somit die Matrix, die man ver-
wenden muss, um die transformierten Einheitsvektoren wieder in die urspriinglichen
Einheitsvektoren iiberzufiihren (S—1).

Insgesamt hat man die Diagonalmatrix D erreicht, indem man die urspriingliche
Matrix A mit der Transformationsmatrix S transformiert hat. Um zur urspriinglichen

Matrix zuriickzukommen, muss man mit der inversen Transformationsmatrix S—!
zuriicktransformieren. Insgesamt kann man A folglich aufteilen in

A= SDS™? (6.2)

Potenzierung ergibt

A" = SDS"1SDS 1. .SDS! (6.3)

wodurch sich alle Faktoren SS~! in der Mitte wegheben, sodass man insgesamt die
Formel

A=SD"S™! (6.4)

erhalt.
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7 Komplexe Diagonalisierbarkeit

Wenn man in die komplexe Ebene wechselt, kann man selbst Matrizen diagonali-
sieren, die scheinbar nicht durch Zerrspiegel dargestellt werden kdnnen, wie zum
Beispiel Drehungen.

Dazu rechnet man wie in diesem Skriptum fiir reele Werte beschrieben, bekommt
beim Losen des Gleichungssystems jedoch nur komplexe Lésungen, was bedeutet,
dass die Zerrachsen nicht wirklich existieren. Bei der Riicktransformation sollten
sich die komplexen Zahlen wieder wegkiirzen, sodass man wieder eine Abbildung
zwischen reellen Zahlen hat.

Falls man den Sylvestrischen Tragheitssatz anwenden mochte, kann man weiterhin
nur durch den Betrag von A dividieren und erhdlt damit in Polarkoordinaten eine
Zahl in der Form e’®. Man erspart sich folglich das Potenzieren des Betrags muss
aber weiterhin den Winkel multiplizieren.

Nicht diagonalisierbare Matrizen gibt es trotzdem und zwar dann, wenn die Eigen-
rdume zusammen weniger Dimensionen als die Matrix Zeilen hat und man deshalb
nicht ausreichend Eigenvektoren fiir alle Dimensionen findet.

8 Gleichzeitig Diagonalisierbare Matrizen

Manchmal mdchte man nicht nur eine Abbildung mehrmals anwenden (Matrix po-
tenzieren) sondern auch unterschiedliche Abbildungen kombinieren (Matrix multi-
plizieren). Dabei kommt man normalerweise nicht um die Matrizenmultiplikation
herum, weil die beiden Matrizen, wenn tiberhaupt, in unterschiedlichen Basisvektor-
systemen diagonal sind.

Es gibt jedoch auch Ausnahmen: Matrizen, die im gleichen Basisvektorsystem diago-
nal sind, bezeichnet man als gleichzeitig oder simultan diagonalisierbar. Anschaulich
bedeutet das, dass die Zerrspiegeln beider Matrizen genau in die gleiche Richtung
aufgehingt sind und diese daher dieselben Eigenvektoren haben (sie miissen aber
das Bild nicht gleich stark verzerren und kénnen daher unterschiedliche Eigenwerte
haben).

Bei der gleichzeitigen Diagonalisierung muss man die Eigenvektoren nur einmal be-
rechnen, weil die Basisvektoren laut Voraussetzung beide gleich sind. Die Eigenwerte
muss man wie gewohnt fiir alle Matrizen berechnen.

Gleichzeitig diagonalisierbare Matrizen erkennt man am leichtesten daran, dass sie
immer kommutativ sind. SchlieRlich macht es keinen Unterschied, ob die Basis-
vektoren zuerst um die Faktoren a bzw. b und dann um die Faktoren c bzw. d
oder umgekehrt gestaucht werden, die Basisvektoren und somit auch alle moglichen
Kombinationen daraus sind nachher gleich.

Go6 -G w-Ga6: e
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Bei anderen Matrizen, bei dem in jeder Basis nur maximal eine Matrix in Diagonal-
gestalt ist, ist das nicht so

5 5)E =G x)=CEM)=C7E5 e
9 Zusammenfassung

I. Das miisst ihr machen, um Matrizen zu diagonalisieren (Seiten 2 - 3):
1. A1 von der Matrix a abziehen

2. Die Determinante der resultierenden Matrix mit 0 gleichsetzen und nach A
auflésen

3. Die Eigenwerte A nacheinander in die Diagonale schreiben

Il. Das miisst ihr machen, um Eigenvektoren zu berechnen (Seiten 3 - 4):
1. Einsetzen eines \ in det(a-A\1)b;=0 fiir jede Koordinate i
2. Losen des Gleichungssystems

3. Ein b; gleich 1 setzen, die anderen b; durch Einsetzen von b; in die Lésung
des Gleichungssystems bestimmen

4. Wenn nicht alle b; bestimmt werden kdnnen ein b;=0 setzen. Diesen Schritt
so lange wiederholen bis alle Vektorkomponenten bestimmt sind. Alle Vektor-
komponenten zusammen ergeben einen Eigenvektor

5. Die Schritte 3 und 4 fiir alle in Schritt 4 mit 0 gleichgesetzten b; wiederholen.
Das ergibt weitere Eigenvektoren desselben Eigenraumes

6. Eine Linearkombination aller Eigenvektoren zur Angabe des Eigenraumes auf-
schreiben

7. Alle Schritte fur alle weiteren \ wiederholen

I11. Das miisst ihr machen, um Matrizen im bestehenden Koordinatensystem
zu potenzieren (Seiten 2 - 8):

1. Matrix diagonalisieren (siehe 1)

2. Jede Zeile durch || dividieren

3. Die Diagonaleintrdge der Matrix potenzieren

4. Berechnung der Eigenvektoren (siehe II)

5. Division der Eigenvektoren durch ihren Betrag

6. Multiplikation der normierten Eigenvektoren mit ||

7. Aufstellen der Transformationsmatrix durch Untereinanderschreibung der Ei-
genvektoren mit Linge A
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8. Aufstellen der inversen Transformationsmatrix durch Gleichsetzung der Trans-
formationsmatrix mit der Einheitsmatrix und Umkehrung des Gleichungssys-
tems

9. Riicktransformation durch Einsetzen in die Formel A” = SD"S—1

IV. Das miisst ihr machen, um Matrizen in einem neuen Koordinatensystem
zu potenzieren (Seiten 2 - 3):

1. Matrix diagonalisieren (siehe 1)
2. Die Diagonaleintrdge der Matrix potenzieren

3. Falls man andere Vektoren oder Matrizen in dieses neue Koordinatensystem
holen mochte, muss man eine Transformationsmatrix berechnen (siehe V)

V. Das miisst ihr machen, um die Transformationsmatrix in ein neues Koor-
dinatensystem zu bestimmen (Seiten 2 - 8)

Man mochte eine Transformationsmatrix berechnen, in der eine Matrix eine Diago-
nalgestalt hat (siehe 1V.3)

1. Berechnung der Eigenvektoren durch Einsetzen aller A\ und Ldsen der Glei-
chungssysteme

2. Orthogonalitdt der Eigenrdume {iberpriifen. Falls sie nicht orthogonal sind,
muss man die Matrix im bestehenden Koordinatensystem potenzieren

3. Orthogonalisieren der Vektoren in den Eigenrdumen mit dem Gram-Schmidt-
Verfahren. Nicht auf das Normieren der Vektoren in 1D-Eigenrdumen verges-
sen!

4. Aufstellen der Transformationsmatrix durch untereinanderschreiben der ortho-
gonalisierten Eigenvektoren

5. Alle Vektoren, auf die man die potenzierte Matrix anwenden méchte durch
Multiplikation mit der Transformationsmatrix transformieren

10 Ubungsaufgaben

1. Diagonalisiere die 2-dimensionale Drehmatrix mit dem Winkel &

2. Potenziere diese Drehmatrix im bestehenden Koordinatensystem mit 8

3. Potenziere diese Drehmatrix im neuen Koordinatensystem mit 8

4. Berechne die Transformationsmatrix ins neue Koordinatensystem aus Aufgabe 3
5. Uberlege dir welche Matrizen mit dieser Drehmatrix gleichzeitig diagonalisierbar
sind.

6. Uberlege dir die physikalische Bedeutung von Diagonalmatrizen mit 2 komplex
konjugierten Eigenwerten

Tipps fiir alle Ubungs_aufgaben: Verwende die Eulerschen Formeln cos¢+ ising =
e'®, cos¢ — isingg = e~'® und den Pythagoras cos?¢ + sin’¢ = 1

10
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11 Losungen

Aufgabe 1

Die Drehmatrix um den Winkel 8 lautet

Subtraktion von A1

o

Gleichsetzen der Determinante mit

(cos(z

8) — AP+ sinz(g) =0

Ausmultiplizieren

T
8

Ausniitzen der Formel cos?¢ + sin¢ =1

cosz(%) —2Xcos(=) + A\ + sin2(%) =0

1- 2)\cos(g) +A2=0

Losen der quadratischen Gleichung mit der Mitternachtsformel

A= cos(%) + cosQ(%) -1

Einsetzen der Formel 1 = cos?¢ + sin®¢

A= cos(3) o) — cos’(§) — i ()

Kiirzen des Cosinus und Wurzel ziehen

A= cos(g) + isin(g)

Vereinfachen mit der Eulerschen Formel

Die Diagonalmatrix lautet folglich

(11.1)

(11.2)

(11.3)

(11.4)

(11.5)

(11.6)

(11.7)

(11.8)

(11.9)

(11.10)



R&ume und Abbildungen Matrizen diagonalisieren

Aufgabe 2

Die Diagonalmatrix ist bereits aus Beispiel 1 bekannt.

Der Betrag der Eigenwerte ist bereits 1 (in Polardarstellung ist der Betrag die Zahl
vor dem Exponenten. Da dort keine steht, ist sie 1). Potenzierung mit 8 erfolgt
durch Multiplikation des Exponenten mit 8

(eo eo,-,r> (11.11)
Vereinfachung der Matrix mit der Formel e’ = cos¢ + ising bzw. e~'* = cos¢ —
ising und den Beziehungen cosm = —1 und sinm =0
(01 01) (11.12)
Berechnung des ersten Eigenvektors durch Einsetzen von \ = e’
cos(%) — €% —sin(g) b\
( sin(%) cos(5)—e's ) \by) 0 (11.13)

(o 0B () - e

Division durch sin(%)

(—1/' j) <Zz> —0 (11.15)

Multiplikation der ersten Zeile mit i

G :j) <Z;) =0 (11.16)

Addition der zweiten Zeile zur ersten Zeile

<(1J _0/) <2> =0 (11.17)

Ausmultiplizieren des Gleichungssystems

b1 —ibp =0= by = ib, (1118)

Willkiirliches einsetzen von b, = 1 ergibt by = i und damit den Eigenraum

12
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k (i) (11.19)

Berechnung des zweiten Eigenvektors durch Einsetzen von A = e~/'%

cos(E) — e '® —sin(%) b\
(o o) () 0 (1120
Einsetzen der Eulerschen Formel e’® = cos¢ — isin¢ und kiirzen des Cosinus
isin(g) —sin(g)\ (b1 _
<s,-,,(g) isin(3) ) \b2) = (11.21)

Division durch sin(%)

<1 _11> (Zl) =0 (11.22)

Multiplikation der ersten Zeile mit i

<_11 7’) (2;) =0 (11.23)

Addition der zweiten Zeile zur ersten Zeile

((1) ?) (2;) =0 (11.24)

Ausmultiplizieren des Gleichungssystems

by +iby =0 = by = —iby (11.25)

Willkiirliches einsetzen von b, = 1 ergibt by = —/ und damit den Eigenraum

/ (_1’) (11.26)

Beim Betrag der komplexen Zahlen muss man aufpassen: Da die Linge in der
komplexen Ebene positiv ist (der Betrag der komplexen Zahl) ist der Gesamtbetrag
des Vektors auch positiv (Genaue Erkldrung siehe Skriptum , Euklidische und unitére
R3ume").

V124 i =V2 (11.27)
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R&ume und Abbildungen Matrizen diagonalisieren

Division durch v/2 ergibt die normierten Eigenvektoren mit Betrag 1. Da die Ei-
genwerte ebenfalls den Betrag 1 haben, muss man nicht mehr weiter multiplizieren
sondern kann gleich die Transformationsmatrix aufstellen.

% <_” D (11.28)

Berechnen der Riicktransformation durch Multiplikation mit V2

i -i|Vv2 o0
1 1|0 2
Multiplikation der ersten Zeile mit i
-1 11iv2 o0
1 1| 0 2

Subtraktion der zweiten Zeile von der ersten Zeile und Addition der ersten Zeile zur
zweiten Zeile

V2 =2
V2 V2

Division der ersten Zeile durch -2 und der zweiten Zeile durch 2 fiihrt auf die
Ricktransformation

-2 0
0 2

1 (-1
2\@(" 1) (11.29)
Einsetzen in die Formel A" = SD"S—1
1 /i 1\(-1 0\ 1 (~i 1
AU )0 D)) (130

Ausmultiplizieren fiihrt auf die Drehmatrix um den Winkel 7 (Spiegelung beider
Achsen)

(_01 01> (11.31)

Das ist auch das erwartete Ergebnis, denn wenn man den Raum acht mal um den
Winkel 3 dreht, hat man ihn insgesamt um den Winkel 7 gedreht.

Aufgabe 3

Die Diagonalmatrix ist bereits aus Beispiel 1 bekannt. Potenzierung mit 8 erfolgt
durch Multiplikation der Exponenten mit 8.

14
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(%5 %) (11.32)
Vereinfachung der Matrix mit der Formel e® = cos¢ + ising bzw. e~'¢ = cos¢ —
ising und den Beziehungen cosm = —1 und sinm =0
(‘01 _01> (11.33)
Aufgabe 4
Berechnung des ersten Eigenvektors durch Einsetzen von \ = e'%
cos(%) — €5 —sin(%) b\
( sin(Z) cos(T) — et ) \b) = 0 (11.34)
Einsetzen der Eulerschen Formel e/® = cos¢ + isin¢ und kiirzen des Cosinus
—isin(g) —sin(g)\ (b1 _
< sin(z)  —isin(%)) \by) = (11.35)

Division durch sin(%)

(—1/' j) <Zz> -0 (11.36)

Multiplikation der ersten Zeile mit i

G :j) (Z;) =0 (11.37)

Addition der zweiten Zeile zur ersten Zeile
0 O b1\
HIRE: (139
Ausmultiplizieren des Gleichungssystems

by —iby =0= by = iby (11.39)

Willkiirliches einsetzen von b, = 1 ergibt by = i und damit den Eigenraum

k (1) (11.40)

15
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Berechnung des zweiten Eigenvektors durch Einsetzen von A\ = e~/%

(COS(;&;"’{(;)Eig cos(_gs;nfge)"g) (2) =0 (11.41)

8

Einsetzen der Eulerschen Formel e’® = cos¢ — isin¢ und kiirzen des Cosinus

(55 28 (3) - o

Division durch sin()

(1 _11> (2;) =0 (11.43)

Multiplikation der ersten Zeile mit i

(_11 _I’> <Z;) =0 (11.44)

Addition der zweiten Zeile zur ersten Zeile

((1) ?) (2;) =0 (11.45)

Ausmultiplizieren des Gleichungssystems

by +ibp =0= by = —ib, (1146)

Willkiirliches einsetzen von b, = 1 ergibt by = —/ und damit den Eigenraum

/ (_1') (11.47)

Da es keine mehrdimensionalen Eigenrdume gibt, entféllt das Priifen der Orthogo-
nalitat dieser Eigenrdume.

Um die Orthogonalitdt der Eigenvektoren zu priifen, bendtigt man das komplexe
Skalarprodukt, bei dem einer der beiden Faktoren komplex konjugiert ist (Genaue
Erklirung siehe Skriptum ,,Euklidische und Unitdre Riume")

-

Da die Vektoren schon orthogonal sind, muss man diese nur noch durch ihren Betrag
dividieren um ein Orthogonalsystem zu erhalten. Dabei benutzt man den komplexen
Betrag, der als Wurzel aus dem komplexe Skalarprodukt mit sich selbst definiert ist.
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) -

Folglich muss man die Eigenvektoren durch v/2 dividieren und die Transformations-
matrix lautet:

1 i1
% <_,. 1) (11.50)
Das Koordinatensystem, das man mit dieser Transformation erreicht, liegt genau so,

dass die Spiegelachse auf der x-Koordinate liegt, sodass die Spiegelmatrix einfach
ist.

Aufgabe 5

Alle Matrizen die zusétzlich zur Drehung um § eine Dehnung oder Stauchung
auslosen, verldngern ebenfalls die selben Achsen. Es sind daher physikalisch gesehen
alle Matrizen, bei denen die beiden Diagonaleintrdge mit unterschiedlichen reellen
Zahlen a, b multipliziert werden.

ae'(¥) 0
( 0 be"(g)) (11.51)

Mathematisch gesehen kann man diese Matrizen auch anders darstellen, wenn man
das Koordinatensystem anders legt. Sie beschreiben dann aber dennoch immer die-
selbe Drehung.

Aufgabe 6

Matrizen mit komplex konjugierten Diagonaleintrigen ze’® und ze='® beschreiben
Drehungen um den Winkel ¢ und VergroRerung bzw. Verkleinerung mit dem Faktor
z.

Das kann man sich iiberlegen, weil man durch Potenzierung der Matrix aus Beispiel
1 mit % und Multiplikation mit z jede beliebige Zahl ze’® in den Diagonaleintrigen
erreichen kann.

Potenzierung bedeutet, dass man die Drehung beliebig oft hintereinander ausfiihrt,
bzw. bei Kommazahlen nur Teile der Drehung. Multiplikation mit z bedeutet, dass
beide Achsen um den Faktor z gedehnt bzw. gestaucht werden, sodass das gesamte
System um den Faktor z vergrolert bzw. verkleinert wird.
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