Taylorreihen

Alle Angaben ohne Gewéhr

Jedes Feedback hilft, die vorliegenden und kiinftigen Skripten zu
verbessern

1 Taylorndherung um den Punkt 0

Wir betrachten eine Regenwolke, und wollen vorhersagen, wo diese nach einer kurzen
Zeitspanne sein wird. Um das Rechnen zu erleichtern, legen wir die Zeitkoordinate
so, dass der Zeitpunkt, an dem wir die Vorhersage machen, 0 ist.

Wenn die Vorhersage nicht weit in die Zukunft reicht, kdnnen wir annehmen, dass
die Wolke nicht weit kommen wird. In einer sehr ungenauen Niherung ist daher ihre
Position noch immer x(0). Diese N3herung, bei der man davon ausgeht, dass der
Ort niherungsweise konstant ist, nennt man ,, Taylorndherung 0. Ordnung".

Wenn uns diese Niherung noch zu ungenau ist, miissen wir die Anderung des Ortes
in unsere Rechnung einbeziehen. Diese bezeichnet man als Geschwindigkeit oder 1.
Ableitung des Ortes. So gesehen kann man die Position der Wolke mit der Formel
2(0) + #(0)t berechnen. Diese N3herung ist zwar besser als die Taylorniherung 0.
Ordnung, aber immer noch nicht perfekt, denn die Geschwindigkeit dndert sich ih-
rerseits. Man bezeichnet die Nadherung als Taylorndherung 1. Ordnung,.

Um die Position noch genauer zu bestimmen, muss man die Anderung der Ge-
schwindigkeit miteinbeziehen. Diese wird als Beschleunigung oder 2. Ableitung des
Ortes bezeichnet. In der Taylorndherung 2. Ordnung nehmen wir an, dass diese kon-
stant ist. Um zu berechnen, wie sich die Beschleunigung auf die Position der Wolke
auswirkt, muss man diese zwei mal integrieren, wobei die Integrationskonstanten
die weniger hohen Ableitungen zum Zeitpunkt 0 sind, sodass die weniger genauen
Taylorndherungen im Ergebnis enthalten sind. Man erh3lt die Formel

2

2(t) = 2(0) +¢(o)t+¢(0)% (1.1)
Diesen Vorgang kann man immer weiter fortsetzen, sofern man ausreichend viele
Ortsableitungen gemessen hat. Um die n-te Taylorndherung zu berechnen muss man
die n-te Ableitung des Ortes n mal integrieren. Bei jedem Integrationsschritt erhéht
sich die Potenz um 1, sodass im Endeffekt ein n in der Potenz steht. Da immer
durch die Potenz dividiert wird, wandert jede Zahl von 1 bis n in den Nenner,
sodass darin ein n!-Term steht. In den Integrationskonstanten stehen alle weniger
genauen Taylorndherungen, sodass bis zum Term mit n summiert wird. Insgesamt
lautet die Formel fiir die n-te Taylorndherung daher
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wobei () fiir die kte Ableitung des Ortes steht.

Diese Naherung kann man nicht nur fiir die Ortsfunktion (also das Verhaltnis von
Ort und Zeit), sondern fiir alle beliebigen stetigen Funktionen verwenden. Dann
setzt man statt t den Wert ein, den man auf der x-Achse auftrdgt und fiir x den
Wert, den man auf der y-Achse auftrégt.

Aufgaben

Berechne die Taylorndherung oder begriinde, warum keine Taylorndherung sinnvoll
ist

1.a. Eine Regenwolke befindet sich heute iiber Wien. Sie fliegt mit einer Geschwin-
digkeit von 100km pro Tag und beschleunigt um 2km pro Tag quadrat. Wie weit
wird die Wolke morgen ungefdhr von Wien entfernt sein, wie weit in einem Jahr?

1.b. Ein Golfball liegt 0,01 Sekunden vor dem Anschlag ruhig da (die Geschwin-
digkeit und alle ihre Ableitungen sind 0). Wie schnell ist der Golfball ungefdhr 0,01
Sekunden nach dem Abschlag

Lésungen

l.a.i. Man setzt fiir die Zeit t 1 Tag ein (weil die Prognose 1 Tag in die Zukunft
reicht). Um das Rechnen zu erleichtern, kann man das Koordinatensystem so le-
gen, dass Wien im Ursprung liegt, sodass man fiir x(0) O einsetzen kann. 4(0)
(1000km/d) und #(0) (2km/d?) sind gegeben. Die héheren Ableitungen weif man
nicht, sodass man die Summe nur bis n=2 gehen lassen kann. Durch Einsetzen in
Formel 1.2. erhilt man eine Entfernung von 1001km

1.a.ii. Hier miisste man fiir t 365,25 einsetzen. Diese Zahl ist so groB, dass die
hoheren Ableitungen als die Beschleunigung extrem stark in die Formel eingehen.
g—i ist ungefahr 10 Millionen, sodass man die Anderung der Beschleunigung mit 10
Millionen multiplizieren muss. (Zum Vergleich: Bei Beispiel a musste man diese mit
% multiplizieren). Das bedeutet, das jede noch so kleine Beschleunigungsdnderung

zu einem vollkommen anderen Ergebnis fiihrt.

1.b. Bei diesem Beispiel vergeht zwar nicht viel Zeit (nur 0,02 Sekunden) eine sinn-
volle N3herung ist aber dennoch nicht méglich, weil die Anderungen zu extrem sind
(beim Abschlag ist die Beschleunigung und jede noch hdhere Ableitung ndherungs-
weise 0o, sodass man die Funktion an der Stelle des Anschlags nidherungsweise als
unstetig betrachten muss).
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2 Taylornaherung um den Punkt a

Manchmal kann man die Zeitachse nicht so legen, dass der Startpunkt bei t=0
liegt, zum Beispiel wenn man die Zeitpunkte unterschiedlicher Ereignisse vergleichen
mochte. In dem Fall muss man in die Formel statt dem Zeitpunkt der ersten Messung
(0) ein (a) und statt der vergangenen Zeit seit der Messung ¢ den Term ¢t — a
einsetzen

" (t—a)F
I;)zw (a) i (2.1)

Aufgaben

2.a. Du programmierst einen Taschenrechner, der den Sinus auf 4 Stellen genau
berechnen soll. Dafiir ist es notwendig, eine Taylorndherung bis zur 10. Ordnung
zu programmieren. Welche Formel verwendet der Taschenrechner, um den Sinus zu
berechnen?

2.b. Der Flacheninhalt eines Kreises ist 4,17. Berechne die Linge des Radius mit
der 1. Taylorndherung ohne Taschenrechner.

Losungen

2.a. Man kann in den Taschenrechner die Maximal-, Minimal- und Nullstellen der
Sinus- und Cosinusfunktion (fiir die Ableitungen) einprogrammieren. Wenn der Be-
nutzer eine Zahl eingibt, muss der Taschenrechner diese auf ein Vielfaches von 7
runden, um den Entwicklungspunkt a zu erhalten. Das erreicht er, indem er die An-
gabe durch 7 dividiert und das Ergebnis rundet. Wenn er das gerundete Ergebnis
mit 5 multipliziert, erhdlt er einen Wert bei dem das Ergebnis der Sinusfunktion
und aller Ableitungen einprogrammiert ist, sodass er in die Taylorreihe (Formel 2.1.)

einsetzen kann:

10 - k
Z sin(k)(a)% (2.2)
k=0 '
Explizit ausgeschrieben lautet die Formel
2 _ )3
sin(a) + cos(a)(t — a) — sin(a) (t—af cos(a) (t 6a) + ... (2.3)

2.b. Der Radius ist die Wurzel aus 4,1. Die Wurzel aus 4 ist bekanntermaRen 2,
folglich kann man die Taylorreihe um die Stelle a=4 entwickeln. Einsetzen in 2.1.
ergibt

t—a 0,1 0,1
ot ———==Vit+ = =2+4-
va 2\/a 2v/4 4

=2,025 (2.4)
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3 Genauigkeit der Taylorreihe

Die Genauigkeit der Taylorreihe hiangt von 3 Faktoren ab:

e Die Entfernung des Punktes um den gen3hert wird (In unserem Beispiel wie
weit die Vorhersage in die Zukunft reicht)

e Die Anzahl der Terme die man berechnet (In unserem Beispiel, ob man nur
die Geschwindigkeit oder auch die Beschleunigung der Wolke misst)

e Die Stirke der Anderungen (In unserem Beispiel wie stabil die Wetterlage ist)

Die Entfernung des Punktes, um den gemessen wird, geht iiber den Wert, den man
fiir t einsetzt, in die Gleichung ein. Man erkennt, dass die hdheren Ableitungen mit
der Entfernung des Punktes immer schneller immer wichtiger werden, weil die Po-
tenz bei jeder Ableitung hoher ist. Wie man durch Einsetzen in (1.2.) sieht, wird
bei ¢ = 2! die Beschleunigung wichtiger als die Geschwindigkeit, bei t = /3! die
Anderung der Beschleunigung und bei t = "+/n! die n-te Ableitung des Ortes. Man
erkennt, dass in einer immer kiirzeren Zeit immer mehr Ableitungen dazukommen,
sodass Vorhersagen iiber einen langen Zeitraum fast unmoglich sind.

Die Anzahl der Terme geht iiber den Wert, den man fiir n einsetzt, in die Taylorreihe
ein. Da t" fiir jedes t langsamer ansteigt als n!, gibt es immer einen Term, ab dem
die hoheren Ableitungen immer unwichtiger werden. Die Ungenauigkeit, wenn man
nach diesem Term abbricht, ist daher klein im Vergleich zum nachfolgenden Term.

Dass die Ungenauigkeit klein ist, falls die Potenz des nachfolgenden Terms klein
ist, kann man mit der Notation O(¢"*1) am Ende der Taylorreihe notieren. Das O
nennt man groles Landau-Symbol.

Die Obergrenze der Ungenauigkeit ist von der Stirke der Anderung abhingig. Bei-
spielsweise ist die Ungenauigkeit einer Taylorndherung der Funktion 2¢* doppelt so
groB, wie die Ungenauigkeit derselben Taylorndherung der Funktion e*, weil sich
alle Ableitungen bei der Funktion 2e* doppelt so schnell dndern.

Um die maximale Ungenauigkeit der Ndherung zu erhalten, muss man die Stelle mit
der maximalen Abweichung (diese wird meistens als & bezeichnet) zwischen dem
Punkt, um den gendhert wird und den Punkt, den man n3hern will in die Funktion
einsetzen. Beispielsweise ware dieser Wert bei der Sinusfunktion immer kleiner als 2,
weil alle Ableitungen des Sinus zwischen 1 und -1 hin- und herpendeln und sich die
Funktionswerte daher nie mehr als 2 Einheiten entfernen. Wenn man jedoch weniger
als 7 von dem Ort entfernt ist, um den man die Taylorreihe entwickelt (was bei
der Sinusfunktion immer mdglich ist), geniigt es 1 einzusetzen, weil die Funktion in

diesem Intervall nur ein Viertel der Schwingung durchfiihren kann.

Das Ergebnis wandert in die Proportionalitatskonstante, sodass die Ungenauigkeit
fast wie ein weiterer Term der Taylorreihe ausschaut (abgesehen davon, dass statt
des Entwicklungspunkts a der Punkt der maximalen Abweichung & eingesetzt wird.

3 a®@ L 4 g o) (1)
k=0 '

(k+1)!
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Dieser Zusatzterm wird als Lagrange’sches Restglied bezeichnet.

Aufgaben

3.a. Wie genau kann man e berechnen, wenn man die Exponentialfunktion bis zur
2. Taylorndherung um den Punkt 0 entwickelt?

3.b. Wie viele Terme bendtigt man, um e auf 1 Nachkommastelle genau zu nihern?

Losungen

3.a. Hier setzt man ins Lagrange'sche Restglied fiir k=2 (weil man die 2. Taylorna-
herung verwendet), fiir t=1 (weil man 1 Einheit von der Entwicklungsstelle entfernt
ist) und fiir £=1 (weil die Exponentialfunktion streng monoton steigend ist, ist die
maximale Ungenauigkeit am Ende des Intervalls) ein. Man erhilt eine Ungenauigkeit
von &
3.b. Bei dieser Aufgabe setzt man das Lagrange'sche Restglied mit 0,05 (weil sich
diese Zahl durch Runden auf die zweite Nachkommastelle auswirkt) gleich. Da sich
die Ableitung der Exponentialfunktion nie veriandert, kann man fiir (%) auf jeden
Fall e einsetzen. Da jede Potenz von 1 1 ist, kann man fiir t**! auf jeden Fall 1
einsetzen. Man erhilt die Beziehung

€

i 0,05 (3.2)

Umformen ergibt die Gleichung (k+1)!=200e. 5! ergibt nur 120 (k=4 ist daher noch
zu wenig). 6! ist 720 und das ist deutlich mehr als dreifach so viel wie 200, daher
geniigt eine Taylorndherung bis zur 5. Ordnung.

4 Differentialgleichungen

Bisher haben wir immer eine bekannte Funktion vorausgesetzt und damit die Taylor-
reihe aufgestellt. Oft ist es jedoch genau umgekehrt: Man kennt den Zusammenhang
zwischen der Funktion und einer beliebigen Ableitung und soll herausfinden, fiir wel-
che Funktionen dieser Zusammenhang gilt.

Betrachten wir als Beispiel eine Population von Zellen. Wenn sich die Zellen im
Schnitt ein mal pro Sekunde teilen ist die Zunahme der Zellen pro Sekunde genauso
grol wie die Anzahl der Zellen. Es gilt daher die Differentialgleichung Z'(0)=Z(0).
Das bedeutet, dass sich die Funktion beim ableiten nicht verdndert. In die Taylorreihe
kann man daher fiir jede beliebige Ableitung Z(0) einsetzen

tn
n!

Z(t) =" Z(0)
n=0
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Die Zahl Z(0) kann man aus der Summe herausheben, weil sie von n unabhingig
ist.

t’n.
n!

Z(t)=2(0) )

n=0

(4.2)

Wenn wir wissen wollen, wie stark die Anzahl der Zellen nach 1 Sekunde angestiegen
ist, setzen wir fiir t=1 ein und erhalten

1
20)=20% & (43)
In der Summe stehen jetzt nur noch Zahlen. Wenn man beliebig viele Zahlen in die
Summe einsetzt, ndhert man sich beliebig nahe der Euler'schen Zahl an. Tatséchlich

ist die Eulersche Zahl sogar iiber diese Reihe definiert. Man erhilt

Z(1) = eZ(0) (4.4)
Die Anzahl der Zellen hat also nach 1 Sekunde um das efache zugenommen.

Jetzt wundern sich wahrscheinlich einige, dass sich die Zahl der Zellen nicht pro
Sekunde verdoppelt, schlieBlich stand in der Angabe ja, dass sich die Zellen durch-
schnittlich 1 mal pro Sekunde teilen. Die Zellen teilen sich jedoch nicht alle genau
am Anfang des betrachteten Intervalls sondern gleichmilig iiber das gesamte In-
tervall verteilt und in der Mitte des Intervalls sind bereits mehr Zellen da, als am
Anfang.

Graphisch gesehen bedeutet das: Wenn man die Tangente bei der Stelle t=0 ein-
zeichnet, schneidet diese tatsidchlich den Punkt (1,2Z(0)). Wenn man diese jedoch
bei einem spateren Teil des Intervalls einzeichnet, ist die Tangente steiler, weil auch
das Z(t) groRer ist.

Nachdem jetzt hoffentlich klar ist, warum die Zellen nach 1 Sekunde um das efache
zugenommen haben, wollen wir diese Erkenntnis verallgemeinern. Da die Zunahme
nicht von der Wahl des Ursprungs der Zeitkoordinate abhingt, kann man festhal-
ten, dass die Anzahl der Zellen nach jeder Sekunde um das efache ansteigt. Nach
1 Sekunde ist die Zahl eZ(0), nach 2 Sekunden ¢2Z(0) und nach t Sekunden ¢! Z(0).

Man kann sich natiirlich auch fragen, was passiert, wenn sich die Zellen pro Sekunde
nicht einmal, sondern A mal teilen. Das bedeutet, dass sich die Zellen durchschnitt-
lich pro % Sekunden ein mal teilen und die Anzahl der Zellen daher schon nach
einer % Sekunden um das e-fache zugenommen hat. Nach 1 Sekunde ist die Zahl

der Zellen daher schon e*Z(0) und nach t Sekunden sogar e*Z(0).

Allgemein kann man feststellen, dass alle Konstanten vor der abgeleiteten Funktion
durch eine konstante innere Ableitung in der Exponentialfunktion hervorgerufen
werden. (Z(t)=e* fiihrt zu Z'(t)=)Xe* = A\Z(t)). Diese Uberlegung nennt man
Exponentialansatz.
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Aufgaben

4a. Ein radioaktives Element zerféllt zu leichteren Elementen. Die Zerfallswahr-
scheinlichkeit betragt 5% pro Sekunde. Wie groR ist die Menge des Elements nach
1 Stunde, wie lange dauert es, bis das Element ganz weg ist, wenn zum Zeitpunkt
t=0 1lkg vorhanden ist?

4.b.i. Die Beschleunigung eines Fadenpendels ist proportional zu seiner Auslenkung
(X"(t)=-kx(t)). Leite mit Hilfe des Exponentialansatzes die Funktion x(t) her.
Tipp: Die innere Ableitung der positiven und der negativen Wurzel kdnnen sich auch
addieren.

4.b.ii. Lege den Zeitpunkt t=0 zuerst so, dass die maximale Auslenkung bei t=0
ist und dann so, dass die Gleichgewichtslage bei t=0 ist. Vergleiche mit der Sinus-
und Cosinusfunktion die ebenfalls bei zweimaliger Ableitung negativ sind. Zeichne
die Rechnungen am Ende in die komplexe Ebene ein.

Losungen

4.a. Im Unterschied zur Zellteilung (wo aus einer Zelle durch Teilung zwei wurden)
zerfillt das radioaktive Element in mehrere leichtere Elemente (sodass aus einem
Atom des Elements durch Teilung 0 werden). Es handelt sich daher nicht um eine
Zunahme sondern um eine Abnahme um 10%. Das heilit nach 20 Sekunden ist die
Anzahl der Zellen nicht eZ(0) sondern nur noch %O) = e~1Z(0), nach einer Stunde
iiberhaupt nur noch e~1807(0).

Die Exponentialfunktion wird {iberhaupt nie 0, sondern sie ndhert sich nur immer
niher dem Wert 0 an. Das entspricht der Tatsache, dass es nie 100% sicher ist,
dass ein Teilchen zerfillt, sondern in unserem Beispiel immer nur 10%. Deshalb
kann man bei radioaktiven Zerfillen immer nur die Halbwertszeit und nicht die ab-
solute Zerfallszeit angeben.

4.b.i. Damit bei der zweiten Ableitung der Proportionalititsfaktor -k ist, muss bei
jeder Ableitung der Proportionalititsfaktor /—k = +iv/k sein. Die zwei offensicht-
lichsten Lsungen sind daher 2:(0)e!V¥* und z(0)e~#V**. Das x(0) kann sich jedoch
auch beliebig auf die beiden Losungen aufteilen. Die allgemeinste Losung ist daher
21(0)e™VF 4 25(0)e~*VF, Die intuitive Bedeutung dieser Kurve wird in Beispiel
4.b.ii. klar.

4.b.ii.l. Bei der maximalen Auslenkung ist x(0)=A mit der Amplitute A und x’(0)=0.
Diese Beziehungen muss man in die allgemeine Losung einsetzen, um die physikali-

sche Bedeutung von z;(0) und x2(0) zu berechnen.

Einsetzen der ersten Beziehung in die allgemeine Lésung

Ableiten der allgemeinen Losung
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/(1) = ivEkz (0)e VR — iVkwy(0)e VR (4.6)

Einsetzen der zweiten Beziehung

iVE21(0) — ivVEzo(0) = 0 = 21(0) = 22(0) (4.7)

Man kann daher in 4.5. entweder x(0) statt x5(0) oder x2(0) statt 21 (0) einsetzen.
Dadurch zeigt sich, dass beide Konstanten g sind. Es ergibt sich somit die Lésung

2(t) = g(eim + eV (4.8)

4.b.ii.1l. Bei der Gleichgewichtslage ist x(0)=0 und x'(0)=Av/k. (Bei der Amplitute
ist die Geschwindigkeit 0, dann nimmt diese pro Meter um vk zu, sodass sie am
Ende der A Meter langen Amplitute Av/k betrigt). Die weitere Rechnung ist analog
wie oben:

Einsetzen der ersten Beziehung in die allgemeine Losung

21(0) + 22(0) =0 = z1(0) = —x2(0) (4.9)

Ableiten der allgemeinen Losung

2/ (t) = iVEkr1(0)e'VF — ivExy(0)e VR (4.10)

Einsetzen der zweiten Beziehung

iVEz1(0) — iVEzo(0) = Akz = 21(0) — 22(0) = ? (4.11)

Man kann laut 4.9. in 4.11. entweder —z1(0) statt x2(0) oder —xz2(0) statt x1(0)
einsetzen. Dadurch zeigt sich, dass z1(0) = £ und 22(0) = — 2 gilt. Die allgemeine
Losung ist daher

A . _
a(t) = Z(ezm — ¢miVhY) (4.12)
4.b.ii.lll. Die Schwingung, die bei der maximalen Auslenkung A beginnt, entspricht

der Cosinusfunktion mit der Amplitute A. Kiirzen durch % ergibt die Beziehung

2cos(x) = e + e (4.13)

Die Schwingung, die bei der Gleichgewichtslage beginnt, entspricht der Sininusfunk-
tion mit Amplitute A. Kiirzen durch % ergibt
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2isin(zr) = " — e (4.14)

Addition der beiden Formeln und Division durch 2 ergibt die sogenannte Eulersche
Formel:

cos(x) + isin(z) = * (4.15)

Das ermdglicht es uns, alles was wir gerechnet haben, in die komplexe Ebene ein-
zuzeichnen.

5 e-ix
.—’-Hf-_d_ I i H"\.,_.
.//
,""
/ - i
/ e e
/ 1 I
f = I
!
l] cos(x) ; X
\ /
\ /
b
"\'\-,_\_ ’__,-"
e |

4 b.ii.IV.x. Eulersche Formel (4.14.) Der cos(x) (rot) und isin(x) (rot) sind An-
kathete und Gegenkathete eines Dreiecks mit Winkel x (gelb). Der Faktor e** (ergibt
sich durch Addition dieser Vektoren) ist folglich die Hypothenuse (griin). Das erklart
auch, warum bei der Polardarstellung einer komplexen Zahl meist der Winkel in die
Potenz geschrieben wird.

4.b.ii.IV.$3. Cosinusformel (4.12.): Wenn man an den Vektor aus 4.14. ¢'® (griin)
durch Addition den selben Vektor mit einem negativen Winkel e~ (griin) hingt,
hebt sich der Imaginarteil (isin(x)) (rot) auf und der Realteil (cos(x)) (rot) verdop-
pelt sich zur Lange 2cos(x) (tiirkis)

4.b.ii.IV.y. Sinusformel (4.13.): Wenn man an den Vektor e'* (griin) —e™**
(griin) anhangt, passiert genau das Gegenteil: Der Realteil (cos(x)) (rot) hebt sich
auf und der Imaginarteil (isin(x)) (rot) verdoppelt sich zu 2isin(x) (tiirkis)

4.b.ii.IV.5. Allgemeine Losung: Bei der allgemeinen Losung ist der Radius des
Einheitskreises (blau) gleich der Halfte der Amplitute (%) Der Winkel x (gelb) ist
At. Der Schnittpunkt der griinen Linien fahrt also gewissermafen mit einer konstan-
ten Winkelgeschwindigkeit A am Einheitskreis entlang.
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Die Losung mit t=0 bei der maximalen Amplitute ist die tiirkise Linie auf der reellen
Achse. Dadurch, dass sich der Imaginarteil heraushebt, ist die Sinusfunktion reell.
Dadurch, dass sich der Realteil verdoppelt ist die Amplitute A.

Die Lésung mit t=0 bei der maximalen Geschwindigkeit ist die tiirkise Linie auf der
komplexen Achse. Dadurch, dass sich der Realteil heraushebt, ist die auftretende
Funktion rein imagindr. Dadurch, dass sich der Imaginarteil verdoppelt, ist die Am-
plitute %. Multiplikation der Funktion mit i fiihrt auf die rein reelle Cosinusfunktion.

5 Eulersche Identitat

Wenn man in die Eulersche Formel einen Winkel von 180° (7 BogenmaR) einsetzt,
erhilt man die Formel

€T =—1=e"4+1=0 (5.1)

Viele Mathematiker finden diese Formel besonders schon, weil darin nur die funf
wichtigsten mathematischen Konstanten: 0, 1, 7, e und i vorkommen. Eine tie-
fere physikalische oder mathematische Bedeutung (abgesehen vom Zeitpunkt der
Schwingung, bei dem die Feder maximal nach unten ausgelenkt ist, falls die Feder-
konstante 1 ist) steckt jedoch nicht dahinter.
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