
Taylorreihen

Alle Angaben ohne Gewähr

Jedes Feedback hilft, die vorliegenden und künftigen Skripten zu
verbessern

1 Taylornäherung um den Punkt 0

Wir betrachten eine Regenwolke, und wollen vorhersagen, wo diese nach einer kurzen
Zeitspanne sein wird. Um das Rechnen zu erleichtern, legen wir die Zeitkoordinate
so, dass der Zeitpunkt, an dem wir die Vorhersage machen, 0 ist.

Wenn die Vorhersage nicht weit in die Zukunft reicht, können wir annehmen, dass
die Wolke nicht weit kommen wird. In einer sehr ungenauen Näherung ist daher ihre
Position noch immer x(0). Diese Näherung, bei der man davon ausgeht, dass der
Ort näherungsweise konstant ist, nennt man �Taylornäherung 0. Ordnung�.

Wenn uns diese Näherung noch zu ungenau ist, müssen wir die Änderung des Ortes
in unsere Rechnung einbeziehen. Diese bezeichnet man als Geschwindigkeit oder 1.
Ableitung des Ortes. So gesehen kann man die Position der Wolke mit der Formel
x(0) + ẋ(0)t berechnen. Diese Näherung ist zwar besser als die Taylornäherung 0.
Ordnung, aber immer noch nicht perfekt, denn die Geschwindigkeit ändert sich ih-
rerseits. Man bezeichnet die Näherung als Taylornäherung 1. Ordnung.

Um die Position noch genauer zu bestimmen, muss man die Änderung der Ge-
schwindigkeit miteinbeziehen. Diese wird als Beschleunigung oder 2. Ableitung des
Ortes bezeichnet. In der Taylornäherung 2. Ordnung nehmen wir an, dass diese kon-
stant ist. Um zu berechnen, wie sich die Beschleunigung auf die Position der Wolke
auswirkt, muss man diese zwei mal integrieren, wobei die Integrationskonstanten
die weniger hohen Ableitungen zum Zeitpunkt 0 sind, sodass die weniger genauen
Taylornäherungen im Ergebnis enthalten sind. Man erhält die Formel

x(t) = x(0) + ẋ(0)t+ ẍ(0)
t2

2
(1.1)

Diesen Vorgang kann man immer weiter fortsetzen, sofern man ausreichend viele
Ortsableitungen gemessen hat. Um die n-te Taylornäherung zu berechnen muss man
die n-te Ableitung des Ortes n mal integrieren. Bei jedem Integrationsschritt erhöht
sich die Potenz um 1, sodass im Ende�ekt ein n in der Potenz steht. Da immer
durch die Potenz dividiert wird, wandert jede Zahl von 1 bis n in den Nenner,
sodass darin ein n!-Term steht. In den Integrationskonstanten stehen alle weniger
genauen Taylornäherungen, sodass bis zum Term mit n summiert wird. Insgesamt
lautet die Formel für die n-te Taylornäherung daher
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n∑
k=0

x(k)(0)
tk

k!
(1.2)

wobei x(k) für die kte Ableitung des Ortes steht.

Diese Näherung kann man nicht nur für die Ortsfunktion (also das Verhältnis von
Ort und Zeit), sondern für alle beliebigen stetigen Funktionen verwenden. Dann
setzt man statt t den Wert ein, den man auf der x-Achse aufträgt und für x den
Wert, den man auf der y-Achse aufträgt.

Aufgaben

Berechne die Taylornäherung oder begründe, warum keine Taylornäherung sinnvoll
ist

1.a. Eine Regenwolke be�ndet sich heute über Wien. Sie �iegt mit einer Geschwin-
digkeit von 100km pro Tag und beschleunigt um 2km pro Tag quadrat. Wie weit
wird die Wolke morgen ungefähr von Wien entfernt sein, wie weit in einem Jahr?

1.b. Ein Golfball liegt 0,01 Sekunden vor dem Anschlag ruhig da (die Geschwin-
digkeit und alle ihre Ableitungen sind 0). Wie schnell ist der Golfball ungefähr 0,01
Sekunden nach dem Abschlag

Lösungen

1.a.i. Man setzt für die Zeit t 1 Tag ein (weil die Prognose 1 Tag in die Zukunft
reicht). Um das Rechnen zu erleichtern, kann man das Koordinatensystem so le-
gen, dass Wien im Ursprung liegt, sodass man für x(0) 0 einsetzen kann. ẋ(0)
(1000km/d) und ẍ(0) (2km/d2) sind gegeben. Die höheren Ableitungen weiÿ man
nicht, sodass man die Summe nur bis n=2 gehen lassen kann. Durch Einsetzen in
Formel 1.2. erhält man eine Entfernung von 1001km

1.a.ii. Hier müsste man für t 365,25 einsetzen. Diese Zahl ist so groÿ, dass die
höheren Ableitungen als die Beschleunigung extrem stark in die Formel eingehen.
t3

3! ist ungefähr 10 Millionen, sodass man die Änderung der Beschleunigung mit 10
Millionen multiplizieren muss. (Zum Vergleich: Bei Beispiel a musste man diese mit
1
6 multiplizieren). Das bedeutet, das jede noch so kleine Beschleunigungsänderung
zu einem vollkommen anderen Ergebnis führt.

1.b. Bei diesem Beispiel vergeht zwar nicht viel Zeit (nur 0,02 Sekunden) eine sinn-
volle Näherung ist aber dennoch nicht möglich, weil die Änderungen zu extrem sind
(beim Abschlag ist die Beschleunigung und jede noch höhere Ableitung näherungs-
weise ∞, sodass man die Funktion an der Stelle des Anschlags näherungsweise als
unstetig betrachten muss).
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2 Taylornäherung um den Punkt a

Manchmal kann man die Zeitachse nicht so legen, dass der Startpunkt bei t=0
liegt, zum Beispiel wenn man die Zeitpunkte unterschiedlicher Ereignisse vergleichen
möchte. In dem Fall muss man in die Formel statt dem Zeitpunkt der ersten Messung
(0) ein (a) und statt der vergangenen Zeit seit der Messung t den Term t − a
einsetzen

n∑
k=0

x(k)(a)
(t− a)k

k!
(2.1)

Aufgaben

2.a. Du programmierst einen Taschenrechner, der den Sinus auf 4 Stellen genau
berechnen soll. Dafür ist es notwendig, eine Taylornäherung bis zur 10. Ordnung
zu programmieren. Welche Formel verwendet der Taschenrechner, um den Sinus zu
berechnen?

2.b. Der Flächeninhalt eines Kreises ist 4,1π. Berechne die Länge des Radius mit
der 1. Taylornäherung ohne Taschenrechner.

Lösungen

2.a. Man kann in den Taschenrechner die Maximal-, Minimal- und Nullstellen der
Sinus- und Cosinusfunktion (für die Ableitungen) einprogrammieren. Wenn der Be-
nutzer eine Zahl eingibt, muss der Taschenrechner diese auf ein Vielfaches von π

2
runden, um den Entwicklungspunkt a zu erhalten. Das erreicht er, indem er die An-
gabe durch π

2 dividiert und das Ergebnis rundet. Wenn er das gerundete Ergebnis
mit π

2 multipliziert, erhält er einen Wert bei dem das Ergebnis der Sinusfunktion
und aller Ableitungen einprogrammiert ist, sodass er in die Taylorreihe (Formel 2.1.)
einsetzen kann:

10∑
k=0

sin(k)(a)
(t− a)k

k!
(2.2)

Explizit ausgeschrieben lautet die Formel

sin(a) + cos(a)(t− a)− sin(a) (t− a)
2

2
− cos(a) (t− a)

3

6
+ ... (2.3)

2.b. Der Radius ist die Wurzel aus 4,1. Die Wurzel aus 4 ist bekanntermaÿen 2,
folglich kann man die Taylorreihe um die Stelle a=4 entwickeln. Einsetzen in 2.1.
ergibt

√
a+

t− a
2
√
a

=
√
4 +

0, 1

2
√
4
= 2 +

0, 1

4
= 2, 025 (2.4)
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3 Genauigkeit der Taylorreihe

Die Genauigkeit der Taylorreihe hängt von 3 Faktoren ab:

• Die Entfernung des Punktes um den genähert wird (In unserem Beispiel wie
weit die Vorhersage in die Zukunft reicht)

• Die Anzahl der Terme die man berechnet (In unserem Beispiel, ob man nur
die Geschwindigkeit oder auch die Beschleunigung der Wolke misst)

• Die Stärke der Änderungen (In unserem Beispiel wie stabil die Wetterlage ist)

Die Entfernung des Punktes, um den gemessen wird, geht über den Wert, den man
für t einsetzt, in die Gleichung ein. Man erkennt, dass die höheren Ableitungen mit
der Entfernung des Punktes immer schneller immer wichtiger werden, weil die Po-
tenz bei jeder Ableitung höher ist. Wie man durch Einsetzen in (1.2.) sieht, wird
bei t = 2! die Beschleunigung wichtiger als die Geschwindigkeit, bei t =

√
3! die

Änderung der Beschleunigung und bei t = n−1
√
n! die n-te Ableitung des Ortes. Man

erkennt, dass in einer immer kürzeren Zeit immer mehr Ableitungen dazukommen,
sodass Vorhersagen über einen langen Zeitraum fast unmöglich sind.

Die Anzahl der Terme geht über den Wert, den man für n einsetzt, in die Taylorreihe
ein. Da tn für jedes t langsamer ansteigt als n!, gibt es immer einen Term, ab dem
die höheren Ableitungen immer unwichtiger werden. Die Ungenauigkeit, wenn man
nach diesem Term abbricht, ist daher klein im Vergleich zum nachfolgenden Term.

Dass die Ungenauigkeit klein ist, falls die Potenz des nachfolgenden Terms klein
ist, kann man mit der Notation O(tn+1) am Ende der Taylorreihe notieren. Das O
nennt man groÿes Landau-Symbol.

Die Obergrenze der Ungenauigkeit ist von der Stärke der Änderung abhängig. Bei-
spielsweise ist die Ungenauigkeit einer Taylornäherung der Funktion 2ex doppelt so
groÿ, wie die Ungenauigkeit derselben Taylornäherung der Funktion ex, weil sich
alle Ableitungen bei der Funktion 2ex doppelt so schnell ändern.

Um die maximale Ungenauigkeit der Näherung zu erhalten, muss man die Stelle mit
der maximalen Abweichung (diese wird meistens als ξ bezeichnet) zwischen dem
Punkt, um den genähert wird und den Punkt, den man nähern will in die Funktion
einsetzen. Beispielsweise wäre dieser Wert bei der Sinusfunktion immer kleiner als 2,
weil alle Ableitungen des Sinus zwischen 1 und -1 hin- und herpendeln und sich die
Funktionswerte daher nie mehr als 2 Einheiten entfernen. Wenn man jedoch weniger
als π

2 von dem Ort entfernt ist, um den man die Taylorreihe entwickelt (was bei
der Sinusfunktion immer möglich ist), genügt es 1 einzusetzen, weil die Funktion in
diesem Intervall nur ein Viertel der Schwingung durchführen kann.

Das Ergebnis wandert in die Proportionalitätskonstante, sodass die Ungenauigkeit
fast wie ein weiterer Term der Taylorreihe ausschaut (abgesehen davon, dass statt
des Entwicklungspunkts a der Punkt der maximalen Abweichung ξ eingesetzt wird.

n∑
k=0

x(k)(a)
(t− a)k

k!
+ x(k+1)(ξ)

(t− a)k+1

(k + 1)!
(3.1)
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Dieser Zusatzterm wird als Lagrange'sches Restglied bezeichnet.

Aufgaben

3.a. Wie genau kann man e berechnen, wenn man die Exponentialfunktion bis zur
2. Taylornäherung um den Punkt 0 entwickelt?

3.b. Wie viele Terme benötigt man, um e auf 1 Nachkommastelle genau zu nähern?

Lösungen

3.a. Hier setzt man ins Lagrange'sche Restglied für k=2 (weil man die 2. Taylornä-
herung verwendet), für t=1 (weil man 1 Einheit von der Entwicklungsstelle entfernt
ist) und für ξ=1 (weil die Exponentialfunktion streng monoton steigend ist, ist die
maximale Ungenauigkeit am Ende des Intervalls) ein. Man erhält eine Ungenauigkeit
von e

6

3.b. Bei dieser Aufgabe setzt man das Lagrange'sche Restglied mit 0,05 (weil sich
diese Zahl durch Runden auf die zweite Nachkommastelle auswirkt) gleich. Da sich
die Ableitung der Exponentialfunktion nie verändert, kann man für x(k) auf jeden
Fall e einsetzen. Da jede Potenz von 1 1 ist, kann man für tk+1 auf jeden Fall 1
einsetzen. Man erhält die Beziehung

e

(k + 1)!
= 0, 05 (3.2)

Umformen ergibt die Gleichung (k+1)!=200e. 5! ergibt nur 120 (k=4 ist daher noch
zu wenig). 6! ist 720 und das ist deutlich mehr als dreifach so viel wie 200, daher
genügt eine Taylornäherung bis zur 5. Ordnung.

4 Di�erentialgleichungen

Bisher haben wir immer eine bekannte Funktion vorausgesetzt und damit die Taylor-
reihe aufgestellt. Oft ist es jedoch genau umgekehrt: Man kennt den Zusammenhang
zwischen der Funktion und einer beliebigen Ableitung und soll heraus�nden, für wel-
che Funktionen dieser Zusammenhang gilt.

Betrachten wir als Beispiel eine Population von Zellen. Wenn sich die Zellen im
Schnitt ein mal pro Sekunde teilen ist die Zunahme der Zellen pro Sekunde genauso
groÿ wie die Anzahl der Zellen. Es gilt daher die Di�erentialgleichung Z'(0)=Z(0).
Das bedeutet, dass sich die Funktion beim ableiten nicht verändert. In die Taylorreihe
kann man daher für jede beliebige Ableitung Z(0) einsetzen

Z(t) =

∞∑
n=0

Z(0)
tn

n!
(4.1)
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Die Zahl Z(0) kann man aus der Summe herausheben, weil sie von n unabhängig
ist.

Z(t) = Z(0)

∞∑
n=0

tn

n!
(4.2)

Wenn wir wissen wollen, wie stark die Anzahl der Zellen nach 1 Sekunde angestiegen
ist, setzen wir für t=1 ein und erhalten

Z(1) = Z(0)

∞∑
n=0

1

n!
(4.3)

In der Summe stehen jetzt nur noch Zahlen. Wenn man beliebig viele Zahlen in die
Summe einsetzt, nähert man sich beliebig nahe der Euler'schen Zahl an. Tatsächlich
ist die Eulersche Zahl sogar über diese Reihe de�niert. Man erhält

Z(1) = eZ(0) (4.4)

Die Anzahl der Zellen hat also nach 1 Sekunde um das efache zugenommen.

Jetzt wundern sich wahrscheinlich einige, dass sich die Zahl der Zellen nicht pro
Sekunde verdoppelt, schlieÿlich stand in der Angabe ja, dass sich die Zellen durch-
schnittlich 1 mal pro Sekunde teilen. Die Zellen teilen sich jedoch nicht alle genau
am Anfang des betrachteten Intervalls sondern gleichmäÿig über das gesamte In-
tervall verteilt und in der Mitte des Intervalls sind bereits mehr Zellen da, als am
Anfang.

Graphisch gesehen bedeutet das: Wenn man die Tangente bei der Stelle t=0 ein-
zeichnet, schneidet diese tatsächlich den Punkt (1,2Z(0)). Wenn man diese jedoch
bei einem späteren Teil des Intervalls einzeichnet, ist die Tangente steiler, weil auch
das Z(t) gröÿer ist.

Nachdem jetzt ho�entlich klar ist, warum die Zellen nach 1 Sekunde um das efache
zugenommen haben, wollen wir diese Erkenntnis verallgemeinern. Da die Zunahme
nicht von der Wahl des Ursprungs der Zeitkoordinate abhängt, kann man festhal-
ten, dass die Anzahl der Zellen nach jeder Sekunde um das efache ansteigt. Nach
1 Sekunde ist die Zahl eZ(0), nach 2 Sekunden e2Z(0) und nach t Sekunden etZ(0).

Man kann sich natürlich auch fragen, was passiert, wenn sich die Zellen pro Sekunde
nicht einmal, sondern λ mal teilen. Das bedeutet, dass sich die Zellen durchschnitt-
lich pro 1

λ Sekunden ein mal teilen und die Anzahl der Zellen daher schon nach
einer 1

λ Sekunden um das e-fache zugenommen hat. Nach 1 Sekunde ist die Zahl
der Zellen daher schon eλZ(0) und nach t Sekunden sogar eλtZ(0).

Allgemein kann man feststellen, dass alle Konstanten vor der abgeleiteten Funktion
durch eine konstante innere Ableitung in der Exponentialfunktion hervorgerufen
werden. (Z(t)=eλt führt zu Z'(t)=λeλt = λZ(t)). Diese Überlegung nennt man
Exponentialansatz.
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Aufgaben

4a. Ein radioaktives Element zerfällt zu leichteren Elementen. Die Zerfallswahr-
scheinlichkeit beträgt 5% pro Sekunde. Wie groÿ ist die Menge des Elements nach
1 Stunde, wie lange dauert es, bis das Element ganz weg ist, wenn zum Zeitpunkt
t=0 1kg vorhanden ist?

4.b.i. Die Beschleunigung eines Fadenpendels ist proportional zu seiner Auslenkung
(x�(t)=-kx(t)). Leite mit Hilfe des Exponentialansatzes die Funktion x(t) her.
Tipp: Die innere Ableitung der positiven und der negativen Wurzel können sich auch
addieren.

4.b.ii. Lege den Zeitpunkt t=0 zuerst so, dass die maximale Auslenkung bei t=0
ist und dann so, dass die Gleichgewichtslage bei t=0 ist. Vergleiche mit der Sinus-
und Cosinusfunktion die ebenfalls bei zweimaliger Ableitung negativ sind. Zeichne
die Rechnungen am Ende in die komplexe Ebene ein.

Lösungen

4.a. Im Unterschied zur Zellteilung (wo aus einer Zelle durch Teilung zwei wurden)
zerfällt das radioaktive Element in mehrere leichtere Elemente (sodass aus einem
Atom des Elements durch Teilung 0 werden). Es handelt sich daher nicht um eine
Zunahme sondern um eine Abnahme um 10%. Das heiÿt nach 20 Sekunden ist die
Anzahl der Zellen nicht eZ(0) sondern nur noch Z(0)

e = e−1Z(0), nach einer Stunde
überhaupt nur noch e−180Z(0).

Die Exponentialfunktion wird überhaupt nie 0, sondern sie nähert sich nur immer
näher dem Wert 0 an. Das entspricht der Tatsache, dass es nie 100% sicher ist,
dass ein Teilchen zerfällt, sondern in unserem Beispiel immer nur 10%. Deshalb
kann man bei radioaktiven Zerfällen immer nur die Halbwertszeit und nicht die ab-
solute Zerfallszeit angeben.

4.b.i. Damit bei der zweiten Ableitung der Proportionalitätsfaktor -k ist, muss bei
jeder Ableitung der Proportionalitätsfaktor

√
−k = ±i

√
k sein. Die zwei o�ensicht-

lichsten Lösungen sind daher x(0)ei
√
kt und x(0)e−i

√
kt. Das x(0) kann sich jedoch

auch beliebig auf die beiden Lösungen aufteilen. Die allgemeinste Lösung ist daher
x1(0)e

i
√
kt + x2(0)e

−i
√
kt. Die intuitive Bedeutung dieser Kurve wird in Beispiel

4.b.ii. klar.

4.b.ii.I. Bei der maximalen Auslenkung ist x(0)=A mit der Amplitute A und x'(0)=0.
Diese Beziehungen muss man in die allgemeine Lösung einsetzen, um die physikali-
sche Bedeutung von x1(0) und x2(0) zu berechnen.

Einsetzen der ersten Beziehung in die allgemeine Lösung

x1(0) + x2(0) = A (4.5)

Ableiten der allgemeinen Lösung
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x′(t) = i
√
kx1(0)e

i
√
kt − i

√
kx2(0)e

−i
√
kt (4.6)

Einsetzen der zweiten Beziehung

i
√
kx1(0)− i

√
kx2(0) = 0⇒ x1(0) = x2(0) (4.7)

Man kann daher in 4.5. entweder x1(0) statt x2(0) oder x2(0) statt x1(0) einsetzen.
Dadurch zeigt sich, dass beide Konstanten A

2 sind. Es ergibt sich somit die Lösung

x(t) =
A

2
(ei
√
kt + e−i

√
kt) (4.8)

4.b.ii.II. Bei der Gleichgewichtslage ist x(0)=0 und x'(0)=A
√
k. (Bei der Amplitute

ist die Geschwindigkeit 0, dann nimmt diese pro Meter um
√
k zu, sodass sie am

Ende der A Meter langen Amplitute A
√
k beträgt). Die weitere Rechnung ist analog

wie oben:

Einsetzen der ersten Beziehung in die allgemeine Lösung

x1(0) + x2(0) = 0⇒ x1(0) = −x2(0) (4.9)

Ableiten der allgemeinen Lösung

x′(t) = i
√
kx1(0)e

i
√
kt − i

√
kx2(0)e

−i
√
kt (4.10)

Einsetzen der zweiten Beziehung

i
√
kx1(0)− i

√
kx2(0) = Akx⇒ x1(0)− x2(0) =

A

i
(4.11)

Man kann laut 4.9. in 4.11. entweder −x1(0) statt x2(0) oder −x2(0) statt x1(0)
einsetzen. Dadurch zeigt sich, dass x1(0) = A

2i und x2(0) = −
A
2i gilt. Die allgemeine

Lösung ist daher

x(t) =
A

2i
(ei
√
kt − e−i

√
kt) (4.12)

4.b.ii.III. Die Schwingung, die bei der maximalen Auslenkung A beginnt, entspricht
der Cosinusfunktion mit der Amplitute A. Kürzen durch A

2 ergibt die Beziehung

2cos(x) = eix + e−ix (4.13)

Die Schwingung, die bei der Gleichgewichtslage beginnt, entspricht der Sininusfunk-
tion mit Amplitute A. Kürzen durch A

2i ergibt
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2isin(x) = eix − e−ix (4.14)

Addition der beiden Formeln und Division durch 2 ergibt die sogenannte Eulersche
Formel:

cos(x) + isin(x) = eix (4.15)

Das ermöglicht es uns, alles was wir gerechnet haben, in die komplexe Ebene ein-
zuzeichnen.

4.b.ii.IV.α. Eulersche Formel (4.14.) Der cos(x) (rot) und isin(x) (rot) sind An-
kathete und Gegenkathete eines Dreiecks mit Winkel x (gelb). Der Faktor eix (ergibt
sich durch Addition dieser Vektoren) ist folglich die Hypothenuse (grün). Das erklärt
auch, warum bei der Polardarstellung einer komplexen Zahl meist der Winkel in die
Potenz geschrieben wird.

4.b.ii.IV.β. Cosinusformel (4.12.): Wenn man an den Vektor aus 4.14. eix (grün)
durch Addition den selben Vektor mit einem negativen Winkel e−ix (grün) hängt,
hebt sich der Imaginärteil (isin(x)) (rot) auf und der Realteil (cos(x)) (rot) verdop-
pelt sich zur Länge 2cos(x) (türkis)

4.b.ii.IV.γ. Sinusformel (4.13.): Wenn man an den Vektor eix (grün) −e−ix
(grün) anhängt, passiert genau das Gegenteil: Der Realteil (cos(x)) (rot) hebt sich
auf und der Imaginärteil (isin(x)) (rot) verdoppelt sich zu 2isin(x) (türkis)

4.b.ii.IV.δ. Allgemeine Lösung: Bei der allgemeinen Lösung ist der Radius des
Einheitskreises (blau) gleich der Hälfte der Amplitute (A2 ). Der Winkel x (gelb) ist
λt. Der Schnittpunkt der grünen Linien fährt also gewissermaÿen mit einer konstan-
ten Winkelgeschwindigkeit λ am Einheitskreis entlang.
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Die Lösung mit t=0 bei der maximalen Amplitute ist die türkise Linie auf der reellen
Achse. Dadurch, dass sich der Imaginärteil heraushebt, ist die Sinusfunktion reell.
Dadurch, dass sich der Realteil verdoppelt ist die Amplitute A.

Die Lösung mit t=0 bei der maximalen Geschwindigkeit ist die türkise Linie auf der
komplexen Achse. Dadurch, dass sich der Realteil heraushebt, ist die auftretende
Funktion rein imaginär. Dadurch, dass sich der Imaginärteil verdoppelt, ist die Am-
plitute A

i . Multiplikation der Funktion mit i führt auf die rein reelle Cosinusfunktion.

5 Eulersche Identität

Wenn man in die Eulersche Formel einen Winkel von 180◦ (π Bogenmaÿ) einsetzt,
erhält man die Formel

eiπ = −1⇒ eiπ + 1 = 0 (5.1)

Viele Mathematiker �nden diese Formel besonders schön, weil darin nur die fünf
wichtigsten mathematischen Konstanten: 0, 1, π, e und i vorkommen. Eine tie-
fere physikalische oder mathematische Bedeutung (abgesehen vom Zeitpunkt der
Schwingung, bei dem die Feder maximal nach unten ausgelenkt ist, falls die Feder-
konstante 1 ist) steckt jedoch nicht dahinter.
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