
Theoretische Physik

Variationsrechnung

Die Variationsrechnung ist die Verallgemeinerung der Extremwertaufgabe auf mehr
als eine Dimension. Es wird jeder Funktion ein Wert zugeordnet (zum Beispiel jedem
Weg der Betrag der Wirkungsänderung) und dann nach jener Funktion gesucht, bei
der dieser Wert minimal ist (Hauptbedingung). Bei den meisten Anwendungen wird
die Menge der Funktionen eingegrenzt, zum Beispiel indem man Anfangs- und End-
wert vorgibt (Nebenbedingung).

Wenn man ein Teilchen sowohl am Anfangs- als auch am Endpunkt beobachtet hat,
weiÿ man, dass die Wirkungsänderung auf dem Weg dazwischen 0 (und der Betrag
der Wirkungsänderung entlang des Weges daher minimal) sein muss. Somit führt
die Variationsrechnung dazu, dass man den Weg des Teilchens berechnen kann.

Wiederholung: Extremwertaufgabe

Bei der Extremwertaufgabe gibt es immer genau so viele Nebenbedingungen, dass
in der Hauptbedingung nur noch eine Unbekannte überbleibt. Ein Beispiel für eine
Extremwertaufgabe ist:

�Welches Rechteck hat bei einem vorgegebenen Umfang die gröÿte Fläche?�

Der Wert der minimiert bzw. maximiert werden soll, ist die Hauptbedingung. In
diesem Beispiel ist das die Fläche

AB = max . (1)

Die Werte, die vorgegeben sind, sind die Nebenbedingungen. In diesem Beispiel gibt
es eine Nebenbedingung: Den Umfang

2A+ 2B = U (2)

Man kann die Hauptbedingung als zweidimensionale Funktion au�assen, die allen A
und B einen Wert zuordnet. Zunächst schränkt man diese auf jene eindimensionale
Funktion ein, bei der die Anfangsbedingung erfüllt ist, zum Beispiel indem man für
B=U-A (Nebenbedingung nach B umgeformt) einsetzt

2A(2U − 2A) = max . (3)

Die Maximumstelle ist jene Stelle, bei der die Ableitung nach der verbleibenden
Koordinate (A weil U konstant ist) 0 ist.
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U − 4A = 0 (4)

Umformung nach A ergibt

A =
U

4
(5)

und Einsetzen in die Anfangsbedingung schlieÿlich

B =
U

4
(6)

Alle Seiten sind ein Viertel des Umfangs lang, man erhält also ein Quadrat.

Wenn man sich nicht sicher ist, ob es sich bei dem Ergebnis um die Maximum- oder
um die Minimumstelle handelt, kann man noch die zweite Ableitung berechnen.
Wenn diese positiv ist, handelt es sich um eine Minimumstelle, wenn diese negativ
ist um eine Maximumstelle. In unserem Beispiel ist der Wert -2, also handelt es sich
tatsächlich um eine Maximumstelle.

Übungsaufgabe 1

Welches Rechteck hat bei einer vorgegebenen Fläche den kleinsten Umfang?

Link zur Lösung

Verallgemeinerung: Variationsrechnung

Bei der Variationsrechnung hat man mitunter nicht ausreichend Nebenbedingungen,
damit die zu extremierende Funktion nur noch von einer Unbekannten abhängt. Ein
Beispiel für eine Variationsrechnung ist:

�Welches ist der kürzeste Weg zwischen 2 Punkten auf dem Mantel eines Zylinders?�

In diesem Beispiel ist die Hauptbedingung das Wegintegral zwischen dem Anfangs-
punkt A und dem Endpunkt E

∫ E

A

√
ẋ2(t) + ẏ2(t) + ż2(t)dt = min. (7)

Die Nebenbedingung ist die Formel für den Kreis, weil man das Koordinatensystem
so legen kann, dass der Zylinder in jeder xy-Ebene einen Kreis um den Ursprung
darstellt.

x2 + y2 = r2 (8)
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An der Stelle hat man das Problem, dass man beim Umformen nach x oder y jeweils
zwei Lösungen (die positive und die negative Wurzel) erhält und deshalb keine ein-
deutige Nebenbedingung in die Hauptbedingung einsetzen kann. Man muss daher
eine andere Möglichkeit �nden, um die Nebenbedingung in die Hauptbedingung zu
inkludieren.

Erste Möglichkeit: Lagrange-Multiplikatoren

Bei dieser Methode muss man die Nebenbedingung zunächst so umformen, dass auf
einer Seite eine Null steht. Das geht immer, indem man eine Seite der Gleichung
von der anderen abzieht. Man kommt damit auf die Gleichung

x2 + y2 − r2 = 0 (9)

Da jetzt die rechte Seite der Nebenbedingung gleich 0 ist, kann man die linke Seite
(oder ein Vielfaches davon) zur Formel dazuzählen oder von der Formel abziehen,
ohne dass sich die Formel ändert. Somit kommt man auf die allgemeinere Bedingung:

∫ E

A

√
ẋ2(t) + ẏ2(t) + ż2(t)dt + λ(x2 + y2 − r2) = min. (10)

In dieser Formel ist die ursprüngliche Hauptbedingung enthalten (der Spezialfall,
dass λ = 0 gilt). Es ist auch die Möglichkeit enthalten, dass man ein Vielfaches
der Nebenbedingung abzieht, weil λ negativ sein kann. Den Faktor λ nennt man
Lagrange-Multiplikator.

Bei der Minimumstelle muss die Ableitung in jeder Richtung 0 sein. Die Koordinate
nach der man ableitet, wir werden sie als ε bezeichnen, darf an jeder Stelle in jede
beliebige Richtung gehen. Die Funktion η(x , y , z) gibt an jeder Stelle an, in welche
Richtung die ε-Koordinate geht. Damit der Weg minimal ist, muss die Ableitung
nach ε für alle Funktionen η(x , y , z) gleich 0 sein.

Hinzufügen der Variation jeder Koordinate in Richtung der Funktion η(x) ergibt

∫ E

A

√
(ẋ + εη̇)2 + (ẏ + εη̇)2 + (ż + εη̇)2dt + λ((x + εη)2 + (y + εη)2 − r2) = min.

(11)

Die Konstante r wird nicht variiert, weil der Weg laut Angabe auf dem Zylinderman-
tel bleiben muss. Dort wo die Koordinaten in der Gleichung abgeleitet vorkommen,
wird auch die Variation mitabgeleitet. Die Koordinate ε wird dabei bereits als kon-
stant angenommen, weil wir beim Ableiten nach ε sowieso nur eine in�nitesimal
kleine Änderung entlang der ε-Koordinate betrachten.

Die innerste Ableitung nach ε ist unabhängig von der Funktion bei jeder Koordinate
η und bei jeder abgeleiteten Koordinate η̇. Die äuÿere Ableitung ist die Ableitung
der Funktion nach derjenigen Ortskoordinate, bei der η dazugezählt wurde. Da η
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zu jeder Koordinate dazugezählt wurde, erhält man für jede Ortskoordinate q jeder
Funktion f die Gleichung

δ

δε

∫ E

A

f (q + εη) + f (q̇ + εη̇)dt =

∫ E

A

δf

δq
η +

δf

δq̇
η̇dt = 0 (12)

Der Buchstabe q steht für die verallgemeinerte Ortskoordinate, das heiÿt für diesen
Buchstaben werden nacheinander die Buchstaben x, y und z eingesetzt, sodass man
auf 3 Gleichungen kommt. Man kann aufgrund der Summenregel in jeder dieser 3
Gleichungen das Integral vor der Summe auseinanderziehen

∫ E

A

δf

δq
ηdt +

∫ E

A

δf

δq̇
η̇dt = 0 (13)

Um η herauszuheben, integrieren wir nur das zweite Integral, wobei wir die partielle
Integration so ausführen, dass η̇ integriert wird.

∫ E

A

δf

δq
ηdt + [

δf

δq̇
η]EA −

∫ E

A

d

dt
(
δf

δq̇
)ηdt = 0 (14)

Die Funktion η ist sowohl am Anfangspunkt A als auch am Endpunkt E immer
0, weil Anfangs- und Endpunkt vorgegeben sind. (An diesen Stellen kann man die
Koordinaten nicht variieren). Dadurch fällt der mittlere Term sowohl beim Einsetzen
von E, als auch beim Einsetzen von A weg und man erhält die kürzere Gleichung

∫ E

A

δf

δq
ηdt −

∫ E

A

d

dt
(
δf

δq̇
)ηdt = 0 (15)

Die einzige Koordinate, die wir noch nicht variiert haben, ist die Zeitkoordinate
t (weil es nur eine Zeitrichtung gibt, braucht man in diese Richtung nicht variie-
ren. Ableiten der Gleichung nach t führt dazu, dass das Integral in beiden Termen
verschwindet.

δf

δq
η − d

dt
(
δf

δq̇
)η = 0 (16)

Wenn die Funktion η 0 ist, ist die Ableitung nach ε immer 0, weil dann die Funktion
gar nicht variiert wird. Wenn die Funktion η nicht 0 ist, darf man die Gleichung
durch η dividieren und erhält die Gleichung

δf

δq
− d

dt
(
δf

δq̇
) = 0 (17)

Diese Gleichung wird als Euler-Lagrange-Gleichung bezeichnet.

Bei der Orts- und Geschwindigkeitsabeleitung handelt es sich um eine partielle Ab-
leitung (das heiÿt eine Ortskoordinate, die von einer Geschwindigkeit abhängt oder
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eine Geschwindigkeitskoordinate die von einem Ort abhängt, wird als Konstante be-
trachtet).

Das liegt daran, dass dieser Teil der Formel ausschlieÿlich von der äuÿeren Ableitung
nach ε kommt, die inneren Ableitungen haben wir alle gekürzt.

Lediglich die Zeitableitung ist eine totale Ableitung (wenn Orte und Geschwindig-
keiten nach der Zeit abgeleitet werden, fallen diese nicht weg sondern werden zu
Geschwindigkeiten bzw. Beschleunigungen).

Um die Euler-Lagrange-Gleichung auf Gleichung 9 anzuwenden, muss man diese
zunächst nach allen Orts- und Geschwindigkeitskoordinaten ableiten

δf

δx
= 2λx (18)

δf

δy
= 2λy (19)

δf

δz
= 0 (20)

δf

δẋ
=

2ẋ√
ẋ2 + ẏ2 + ż2

(21)

δf

δẏ
=

2ẏ√
ẋ2 + ẏ2 + ż2

(22)

δf

δż
=

2ż√
ẋ2 + ẏ2 + ż2

(23)

Einsetzen dieser Gleichungen in die Euler-Lagrange-Gleichung ergibt das Differen-
tialgleichungssystem

2λx − d

dt
(

2ẋ√
ẋ2 + ẏ2 + ż2

) = 0 (24)

2λy − d

dt
(

2ẏ√
ẋ2 + ẏ2 + ż2

) = 0 (25)

− d

dt
(

2ż√
ẋ2 + ẏ2 + ż2

) = 0 (26)

Berechnen der Zeitableitungen ergibt die Lagrangegleichungen 1.Art

2λx − 2ẍ√
ẋ2 + ẏ2 + ż2

+
2ẋ(2ẋ ẍ + 2ẏ ÿ + 2ż z̈)√

(ẋ2 + ẏ2 + ż2)3
= 0 (27)

2λy − 2ÿ√
ẋ2 + ẏ2 + ż2

+
2ẏ(2ẋ ẍ + 2ẏ ÿ + 2ż z̈)√

(ẋ2 + ẏ2 + ż2)3
= 0 (28)

− 2z̈√
ẋ2 + ẏ2 + ż2

+
2ż(2ẋ ẍ + 2ẏ ÿ + 2ż z̈)√

(ẋ2 + ẏ2 + ż2)3
= 0 (29)

Die Lagrangegleichungen sind Di�erentialgleichungen 2. Ordnung, die man erhält,
wenn man Haupt- und Nebenbedingung in die Euler-Lagrange-Gleichungen einsetzt.
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Im Allgemeinen kann man diese Gleichungen nicht lösen. Dieses Problem kann man
umgehen, indem man Hamilton- statt Lagrangegleichungen aufstellt. (ein Skriptum
über die Hamiltongleichungen ist in Planung)

Übungsaufgabe 2

Stelle die Lagrangegleichungen 1. Art für den kürzesten Weg auf einer Kugelober-
�äche auf.

Link zur Lösung

Zweite Möglichkeit: Generalisierte Koordinaten

Die zweite Möglichkeit, wie man die Nebenbedingung in die Gleichung inkludiert,
funktioniert, indem man die Koordinaten so legt, dass sie gar nicht in ein Gebiet
führen, in dem die Nebenbedingungen nicht erfüllt sind.

Im obigen Beispiel geht das relativ leicht, weil man die Zylinderkoordinaten φ und z
verwenden kann. Die r-Koordinate lässt man mit Absicht weg, weil die r-Koordinate
auf der Zylinderober�äche konstant ist und wir daher keine Variation entlang der
r-Koordinate vornehmen wollen.

Im allgemeinen muss man sich überlegen, auf welchem Teilraum sich die Bewegung
abspielen kann und dann Koordinaten wählen, die jede Stelle des Teilraums errei-
chen, aber nicht aus dem Teilraum hinausgehen. Das erfordert mitunter einiges an
Vorstellungskraft.

Wenn man passende Koordinaten gefunden hat, ist der Rechenweg jedoch deutlich
kürzer als mit Lagrange-Multiplikatoren: Man muss nach weniger Koordinaten ab-
leiten und bekommt dadurch ein kleineres Di�erentialgleichungssystem.

Um die Hauptbedingung in den neuen Koordinaten anzugeben, benötigt man die
passenden Umrechnungsformeln. In unserem Beispiel sind das die bekannten Um-
rechnungsformeln in Zylinderkoordinaten.

x(t) = Rcosφ(t) (30)

y(t) = Rsinφ(t) (31)

z(t) = z(t) (32)

Der Faktor R ist dabei in dem Fall keine Koordinate sondern eine Konstante (Des-
halb auch keine t-Abhängigkeit). Ableitung dieser Gleichungen nach t führt auf die
Umrechnungsformeln für ẋ , ẏ und ż

ẋ(t) = −Rsinφ(t)φ̇(t) (33)

ẏ(t) = Rcosφ(t)φ̇(t) (34)

ż(t) = ż(t) (35)
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Diese Formeln kann man in Gleichung 7 einsetzen, um diese in Zylinderkoordinaten
darzustellen.

∫ E

A

√
R2sin2φφ̇2 + R2cos2φφ̇2 + ż2dt (36)

Herausheben des Faktors r2φ̇2 aus den ersten zwei Termen führt auf die Gleichung

∫ E

A

√
R2φ̇2(sin2φ+ cos2φ) + ż2dt (37)

Der Faktor sin2φ+ cos2φ ist der Pythagoras am Einheitskreis. Dieser ergibt immer
1, sodass die Formel für das Wegintegral in Zylinderkoordinaten

∫ E

A

√
R2φ̇2 + ż2dt (38)

lautet.

An und für sich hätte man sich die Formel auch einfacher überlegen können: Die
Zylinderkoordinaten stehen nach wie vor im rechten Winkel aufeinander, sodass man
immer noch den Pythagoras anwenden kann. Nur die Änderung entlang der Win-
kelkoordinate muss man mit dem Radius multiplizieren, damit sie wie die anderen
Einheiten in Meter und nicht in Bogenmaÿ skaliert werden.

Das Verständnis der Herleitung mit Hilfe der Umrechnungsformel ist dennoch sinn-
voll, weil man manchmal auch kompliziertere Koordinaten verwenden muss, bei
denen die Herleitung aus der Umrechnungsformel leichter ist.

Die Variation entlang der ε-Koordinate ist analog wie bei der Methode mit den
Lagrange-Multiplikatoren, schlieÿlich ist es egal, welche Hauptbedingung man va-
riiert und in welchen Koordinaten man diese angibt. Man erhält dadurch dieselben
Euler-Lagrange-Gleichungen in die man wie gewohnt die Hauptbedingung einsetzt.

Ableiten der Hauptbedingung nach allen Geschwindigkeitskoordinaten führt auf.

δf

δφ̇
=

R2φ̇√
R2φ̇2 + ż2

(39)

δf

δż
=

ż√
R2φ̇2 + ż2

(40)

Die Ableitung nach den Ortskoordinaten ist 0, weil diese Unbekannten in der Glei-
chung nicht vorkommen. Einsetzen dieser Beziehungen in die Euler-Lagrange-Gleichungen
ergibt
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d

dt
(

R2φ̇√
R2(φ̇2 + ż2

) = 0 (41)

d

dt
(

ż√
R2φ̇2 + ż2

) = 0 (42)

Bilden der zeitlichen Ableitungen führt auf die Lagrangegleichungen 2. Art

r2φ̈√
R2φ̇2 + ż2

+
R2φ̇(2R2φ̇φ̈+ 2ż z̈)

(
√

(R2φ̇2 + ż2)3
= 0 (43)

z̈√
R2φ̇2 + ż2

+
ż(2R2φ̇φ̈+ 2ż z̈)√

(R2φ̇2 + ż2)3
= 0 (44)

Das Lösen des Gleichungssystems würde auf dieselben Bewegungsgleichungen wie
bei den Lagrangegleichungen 1. Art führen.

Übungsaufgabe 3

Stelle die Lagrangegleichungen 2. Art für den kürzesten Weg auf einer Kugelober-
�äche auf.

Link zur Lösung

Anwendung: Prinzip der stationären Wirkung

Bei den bisherigen Beispielen haben wir jeder Funktion eine Länge zugeordnet.
Man kann den Funktionen jedoch auch beliebige andere Werte (zum Beispiel die
Wirkung) zuordnen. Man setzt dafür in die Hauptbedingung statt dem Wegintegral
die Formel für die Wirkung ein.

mv2

2
+

∫ E

A

F (x)dx = stationär (45)

Diese Formel nennt man Lagrangefunktion und man kürzt sie mit dem Buchstaben
L ab. Wenn man die Variationsrechnung auf die Lagrangefunktion anwendet, be-
kommt man einen Weg, an dem die Wirkung minimal, maximal oder eine Sattelstelle
(also stationär) ist. Da das Prinzip der stationären Wirkung laut unseren bisherigen
Erfahrungen immer erfüllt ist, erhält man genau die physikalisch möglichen Wege.

Übungsaufgabe 4

Leite durch Anwendung der Euler-Lagrange-Gleichungen auf die Lagrangefunktion
die Formel für die Kraft her

Link zur Lösung
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Zwangsbedingungen

Zwangsbedingungen sind das Analogon zu Nebenbedingungen. Diese treten dann
auf, wenn eine Kraft (man nennt sie Zwangskraft) zu einer Einschränkung der Be-
wegungsmöglichkeiten führt.

Wenn man beispielsweise ein Pendel im Gravitationsfeld betrachtet, wirkt zusätzlich
zur Gravitationskraft (die das Pendel zum Schwingen bringt) die Kraft des Fadens,
die jeden Teil des Pendels auf einem konstanten Radius zum Aufhängepult hält.

Die Gravitationskraft führt zur Bewegung. Diese muss man daher als F(x) in das
Prinzip der stationären Wirkung einsetzen. Im Gegensatz dazu führt die Kraft des
Fadens nur zu einer Einschränkung der Bewegung. Sie ist daher eine Zwangskraft,
die durch eine Zwangsbedingung angegeben wird.

Natürlich bedeutet das nicht, dass das Pendel immer hält. In tatsächlichen An-
wendungen muss man erst messen, ob das Pendel alle auftretenden Kräfte aushält,
bevor man die Lagrangegleichungen aufstellen kann.

Wenn man die Lagrangegleichungen 1. Art verwendet, addiert man gewissermaÿen
alle Kräfte. Bei den Kräften, die eine Bewegung auslösen, kennt man Beschleuni-
gung und Richtung. Diese kann man ohne λ als Hauptbedingung addieren. Bei den
Kräften, die die Bewegung einschränken, kennt man nur die Richtung. Diese muss
man mit der unbekannten Variable λ multiplizieren.

Da man im Verlauf der Rechnung auch λ erhält, kann man die Stärke der Zwangs-
kraft mit Hilfe der Lagrangegleichungen 1. Art ebenfalls berechnen. Diese muss
immer genauso groÿ sein, dass sie die Kräfte, die den Körper aus der erzwungenen
Bahn zu drücken versuchen, ausgleicht.

Wenn man die Lagrangegleichungen 2. Art verwendet, betrachtet man nur die Orte,
auf denen sich das Pendel bewegen kann (also nur die Ober�äche der Kugel mit
dem Mittelpunkt im Aufhängepunkt). Als Koordinaten kann man φ und θ in Kugel-
koordinaten verwenden. Die Anzahl der notwendigen Koordinaten bezeichnet man
als Freiheitsgrade, in diese Richtungen hat das Pendel gewissermaÿen die Freiheit
sich zu bewegen.

Es gibt auch Zwangskräfte, die man weder mit Hilfe von Lagrange-Multiplikatoren
noch mit Hilfe von generalisierten Koordinaten in die Hauptbedingung integrieren
kann. Diese werden als Anholonome Zwangsbedingungen bezeichnet und durch eine
Ungleichung dargestellt.

Ein Beispiel für eine anholonome Zwangsbedingung ist ein Teilchen, das durch einen
Boden vom Herunterfallen abgehalten wird. Wenn sich der Boden bei der Stelle z=0
be�ndet, lautet die Zwangsbedingung z>0.

Diese Zwangsbedingung kann man nicht zur Lagrangegleichung dazuzählen, weil
auf der einen Seite der Gleichung immer auch etwas höheres als 0 stehen kann.
Auch die Einführung von generalisierten Koordinaten ist nicht möglich, weil nicht
die Anzahl der Koordinaten, sondern nur die Distanz entlang einer Koordinate durch
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die Zwangsbedingung eingeschränkt wird.

Man kann ein derartiges System nicht mit dem Lagrangeformalismus lösen, sondern
benötigt Stoÿgesetze und Elastizitätseigenschaften. Das Lösen der Bewegungsglei-
chung für anholonome Zwangsbedingungen geht über den Sto� des Skriptums hin-
aus.

Bei holonomen Zwangsbedingungen (also denen, die sich für den Lagrangeforma-
lismus eignen) gilt, dass jede Zwangsbedingung einen Freiheitsgrad reduziert. Am
Beginn hat jeder der beteiligten Körper drei Freiheitsgrade, die Zahl der Freiheits-
grade beträgt also immer 3K-Z, wobei K die Anzahl der beteiligten Körper und Z
die Anzahl der Zwangsbedingungen darstellt.

Wenn man die generalisierten Koordinaten aufstellt, kann man sich überlegen, ob
man ausreichend aber nicht zu viele Koordinaten angibt. Dadurch kann man ver-
meiden, dass man eine Koordinate oder eine Einschränkung vergisst.

Übungsaufgabe 5

Ein Körper rollt auf einer schiefen Ebene mit einer Neigung von 45◦ abwärts.
Er ist auf einer Schiene eingespannt. Die Anordnung be�ndet sich in Erdnähe
(Man darf die Gravitationsbeschleunigung als konstant mit g=10m

s2 nach unten
nähern). Berechne die Zwangskraft, die Freiheitsgrade und die Lagrangegleichungen

Link zur Lösung
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Lösungen der Übungsaufgaben

Übungsaufgabe 1

Die Hauptbedingung ist die Umfangformel

A+ B = min. (46)

Die Nebenbedingung ist die Flächenformel

AB = F (47)

Einsetzen der Nebenbedingung in die Hauptbedingung

A+
F

A
= max . (48)

Ableitung nach A

1− F

A2
= 0 (49)

Umformung nach A

A =
√
F (50)

Einsetzen von A in die Anfangsbedingung

√
FB = F (51)

Umformung nach B

B =
√
F (52)

Berechnung der zweiten Ableitung

2F

A3
> 0 (53)

A = B =
√
F ist eine Minimumstelle

Übungsaufgabe 2

Die Hauptbedingung ist wieder das Wegintegral

∫ E

A

√
ẋ2(t) + ẏ2(t) + ż2(t)dt = min. (54)
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Die Nebenbedingung ist diesmal die Kugelformel

x2 + y2 + z2 = r2 (55)

Subtraktion von r2

x2 + y2 + z2 − r2 = 0 (56)

Addieren der Nebenbedingung mit Lagrange-Multiplikatoren

∫ E

A

√
ẋ2 + ẏ2 + ż2dt + λ(x2 + y2 + z2 − r2) = min. (57)

Berechnung der Ableitung nach allen Koordinaten

δf

δx
= 2λx (58)

δf

δy
= 2λy (59)

δf

δz
= 2λz (60)

δf

δẋ
=

2ẋ√
ẋ2 + ẏ2 + ż2

(61)

δf

δẏ
=

2ẏ√
ẋ2 + ẏ2 + ż2

(62)

δf

δż
=

2ż√
ẋ2 + ẏ2 + ż2

(63)

Einsetzen der Ableitungen in die Euler-Lagrange-Gleichungen

2λx − d

dt
(

2ẋ√
ẋ2 + ẏ2 + ż2

) = 0 (64)

2λy − d

dt
(

2ẏ√
ẋ2 + ẏ2 + ż2

) = 0 (65)

2λz − d

dt
(

2ż√
ẋ2 + ẏ2 + ż2

) = 0 (66)

Partielle Ableitung nach der Zeit ergibt die Lagrangegleichungen

2λx − 2ẍ√
ẋ2 + ẏ2 + ż2

− 2ẋ(2ẋ ẍ + 2ẏ ÿ + 2ż z̈)√
(ẋ2 + ẏ2 + ż2)3

= 0 (67)

2λy − 2ÿ√
ẋ2 + ẏ2 + ż2

− 2ẏ(2ẋ ẍ + 2ẏ ÿ + 2ż z̈)√
(ẋ2 + ẏ2 + ż2)3

= 0 (68)

2λz − 2z̈√
ẋ2 + ẏ2 + ż2

− 2ż(2ẋ ẍ + 2ẏ ÿ + 2ż z̈)√
(ẋ2 + ẏ2 + ż2)3

= 0 (69)
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Übungsaufgabe 3

Verwendung von Kugelkoordinaten mit der Konstanten R

x(t) = Rsinθ(t)cosφ(t) (70)

y(t) = Rsinθ(t)sinφ(t) (71)

z(t) = Rcosθ(t) (72)

Ableitung der Umrechnungsformel nach t

ẋ(t) = Rcosθ(t)θ̇(t)cosφ(t)− Rsinθ(t)sinφ(t)φ̇(t) (73)

ẏ(t) = Rcosθ(t)θ̇(t)sinφ(t) + Rsinθ(t)cosφ(t)φ̇(t) (74)

ż(t) = −Rsinθ(t)θ̇(t) (75)

Einsetzen der Formeln gibt unter der Wurzel den Ausdruck

R2cos2θθ̇2cos2φ− 2R2cosθsinθcosφsinφφ̇ +R2sin2θsin2φφ̇2 + (76)

R2cos2θθ̇2sin2φ+ 2R2cosθsinθcosφsinφφ̇ +R2sin2θcos2φφ̇2 + (77)

R2sin2θθ̇2 (78)

Links und rechts Pythagoras am Einheitskreis herausheben
Der mittlere Term fällt in Zeile 76 und 77 ganz weg

∫ E

A

√
R2cos2θθ̇2 + R2sin2θφ̇2 + R2sin2θθ̇2dt (79)

Links und rechts Pythagoras am Einheitskreis herausheben

∫ E

A

√
R2θ̇2 + R2sin2θφ̇2dt (80)

Alternativ hätte man sich das Wegintegral auch gra�sch überlegen können
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Der Kreis an dem die φ-Koordinate gemessen wird, hat den Radius Rsinθ

Bilden der Ableitungen nach den Ortskoordinaten

δf

δφ
= 0 (81)

δf

δθ
=

2R2sinθcosθθ̇√
R2θ̇2 + R2sin2θφ̇2

(82)

δf

δφ̇
=

2R2sin2θφ̇√
R2θ̇2 + R2sin2θφ̇2

(83)

δf

δθ̇
=

2R2θ̇√
R2θ̇2 + R2sin2θφ̇2

(84)

Einsetzen in die Euler-Lagrange-Gleichungen

− d

dt
(

2R2sin2θφ̇√
R2θ̇2 + R2sin2θφ̇2

) = 0 (85)

2R2sinθcosθθ̇√
R2θ̇2 + R2sin2θφ̇2

− d

dt
(

2R2θ̇√
R2θ̇2 + R2sin2θφ̇2

) = 0 (86)
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Berechnung der Ableitung nach der Zeit

−4R2sinθθ̇φ̇+ 2R2sin2θφ̈√
R2θ̇2 + R2sin2θφ̇2

− 2R2sin2θφ̇(2R2θ̇θ̈ + 2R2sinθcosθθ̇φ̇2 + 2R2sin2θφ̈)√
(R2θ̇2 + R2sin2θφ̇2)3

= 0

(87)

2R2sinθcosθθ̇ − 2R2θ̈√
R2θ̇2 + R2sin2θφ̇2

− 2R2θ̇(2R2θ̇θ̈ + 2R2sinθcosθθ̇φ̇2 + 2R2sin2θφ̇φ̈)√
(R2θ̇2 + R2sin2θφ̇2)3

= 0

(88)

Übungsaufgabe 4

Die Hauptbedingung ist die Formel für die Wirkung

mv2

2
+

∫ E

A

F (x)dx = stationär (89)

Berechnung der Ableitungen

δL

δx
= F (x) (90)

δL

δv
= mv (91)

Einsetzen in die Euler-Lagrange-Gleichungen

F (x)− d

dt
(mv) = 0 (92)

Berechnung der Zeitableitung

F (x)−ma = 0 (93)

Nach F(x) umstellen

F (x) = ma (94)

Übungsaufgabe 5

Die Kraft ist Masse mal Beschleunigung.
Einsetzen der konstanten Fallbeschleunigung -g ergibt

F (x) = −mg (95)
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Die Gravitation wirkt nur entlang der z-Koordinate.
Die Formel für die Wirkung lautet daher

mv2

2
−
∫ E

A

−mgdz (96)

Berechnung des Integrals

mv2

2
+mgz (97)

Die Zwangsbedingungen lauten

y = C (98)

x = z + K (99)

Man kann den Ursprung des Koordinatensystems so legen,
dass beide Konstanten 0 sind

y = 0 (100)

x = z (101)

Die generalisierte Koordinate ist die um 45◦ gedrehte x-Koordinate

X = x − z (102)

Da es zwei Zwangsbedingungen und nur einen Körper gibt,
benötigt man nur eine Koordinate.

3K − Z = 3− 2 = 1 (103)

Um die Zwangskraft zu berechnen,
muss man die Lagrangegleichungen 1. Art verwenden

mv2

2
+mgz + λ1y + λ2(x − z) (104)

Einsetzen der Betragsformel für die Geschwindigkeit

m(ẋ2 + ẏ2 + ż2)

2
+mgz + λ1y + λ2(x − z) (105)

Die Geschwindigkeit in y-Richtung ist laut Angabe 0

m(ẋ2 + ż2)

2
+mgz + λ1y + λ2(x − z) (106)
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Berechnung der Ableitungen

δL

δx
= λ2 (107)

δL

δy
= λ1 (108)

δL

δz
= mg − λ2 (109)

δL

δẋ
= mẋ (110)

δL

δẏ
= 0 (111)

δL

δż
= mż (112)

Zusätzlich müssen auch die Zwangsbedingungen gelten

y = 0 (113)

x − z = 0 (114)

Einsetzen in die Euler-Lagrange-Gleichungen

λ2 −
d

dt
(mẋ) = 0 (115)

λ1 = 0 (116)

mg − λ2 −
d

dt
(mż) = 0 (117)

Berechnung der Ableitungen

λ2 −mẍ = 0 (118)

λ1 = 0 (119)

mg − λ2 −mz̈ = 0 (120)

Umformen nach λ2

λ2 = mẍ = mg −mz̈ (121)

Aus der Anfangsbedingung x=z folgt ẍ = z̈

λ2 = mẍ = mg −mẍ (122)

Umformen des zweiten Teils der Gleichung nach ẍ

ẍ =
g

2
(123)
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Einsetzen in Gleichung 122

λ2 =
mg

2
(124)

Multiplikation mit dem Gradient der Zwangsbedingung

Z1 = 0 (125)

Z2 =
mg

2

1
0
1

 (126)

Die erste Zwangskraft ist 0. Keine Kraft versucht den Körper aus der Schiene zu
bewegen, folglich muss die Schiene auch keine Kraft ausüben.

Die zweite Zwangskraft muss die Gravitation durch die schiefe Ebene ausgleichen. In
x-Richtung wirkt die halbe Schwerkraft, damit der Körper nicht gerade hinunterfällt
und in z-Richtung wirkt die halbe Schwerkraft, damit der Körper nur mit halber
Geschwindigkeit herunterfällt, sodass die halbe Schwerkraft in x-Richtung genügt.

18


