Theoretische Physik

Variationsrechnung

Die Variationsrechnung ist die Verallgemeinerung der Extremwertaufgabe auf mehr
als eine Dimension. Es wird jeder Funktion ein Wert zugeordnet (zum Beispiel jedem
Weg der Betrag der Wirkungsidnderung) und dann nach jener Funktion gesucht, bei
der dieser Wert minimal ist (Hauptbedingung). Bei den meisten Anwendungen wird
die Menge der Funktionen eingegrenzt, zum Beispiel indem man Anfangs- und End-
wert vorgibt (Nebenbedingung).

Wenn man ein Teilchen sowohl am Anfangs- als auch am Endpunkt beobachtet hat,
weill man, dass die Wirkungsidnderung auf dem Weg dazwischen 0 (und der Betrag
der Wirkungsédnderung entlang des Weges daher minimal) sein muss. Somit fiihrt
die Variationsrechnung dazu, dass man den Weg des Teilchens berechnen kann.

Wiederholung: Extremwertaufgabe

Bei der Extremwertaufgabe gibt es immer genau so viele Nebenbedingungen, dass
in der Hauptbedingung nur noch eine Unbekannte iiberbleibt. Ein Beispiel fiir eine
Extremwertaufgabe ist:

Welches Rechteck hat bei einem vorgegebenen Umfang die groBbte Flache?"

Der Wert der minimiert bzw. maximiert werden soll, ist die Hauptbedingung. In
diesem Beispiel ist das die Flache

AB = max. (1)

Die Werte, die vorgegeben sind, sind die Nebenbedingungen. In diesem Beispiel gibt
es eine Nebenbedingung: Den Umfang

2A+2B=U 2)

Man kann die Hauptbedingung als zweidimensionale Funktion auffassen, die allen A
und B einen Wert zuordnet. Zunidchst schrankt man diese auf jene eindimensionale
Funktion ein, bei der die Anfangsbedingung erfiillt ist, zum Beispiel indem man fiir
B=U-A (Nebenbedingung nach B umgeformt) einsetzt

2A(2U — 2A) = max. (3)

Die Maximumstelle ist jene Stelle, bei der die Ableitung nach der verbleibenden
Koordinate (A weil U konstant ist) O ist.
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U—4A=0 (4)
Umformung nach A ergibt

A:Z (5)

und Einsetzen in die Anfangsbedingung schlieBlich

B= (6)

Alle Seiten sind ein Viertel des Umfangs lang, man erhlt also ein Quadrat.

Wenn man sich nicht sicher ist, ob es sich bei dem Ergebnis um die Maximum- oder
um die Minimumstelle handelt, kann man noch die zweite Ableitung berechnen.
Wenn diese positiv ist, handelt es sich um eine Minimumstelle, wenn diese negativ
ist um eine Maximumstelle. In unserem Beispiel ist der Wert -2, also handelt es sich
tatsdchlich um eine Maximumstelle.

Ubungsaufgabe 1

Welches Rechteck hat bei einer vorgegebenen Flache den kleinsten Umfang?

Link zur Losung

Verallgemeinerung: Variationsrechnung

Bei der Variationsrechnung hat man mitunter nicht ausreichend Nebenbedingungen,
damit die zu extremierende Funktion nur noch von einer Unbekannten abhdngt. Ein
Beispiel fiir eine Variationsrechnung ist:

,Welches ist der kiirzeste Weg zwischen 2 Punkten auf dem Mantel eines Zylinders?"

In diesem Beispiel ist die Hauptbedingung das Wegintegral zwischen dem Anfangs-
punkt A und dem Endpunkt E

/A VX2(t) + y2(t) + 22(t)dt = min. (7)

Die Nebenbedingung ist die Formel fiir den Kreis, weil man das Koordinatensystem
so legen kann, dass der Zylinder in jeder xy-Ebene einen Kreis um den Ursprung
darstellt.

gyt =12 ®)
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An der Stelle hat man das Problem, dass man beim Umformen nach x oder y jeweils
zwei Ldsungen (die positive und die negative Wurzel) erhilt und deshalb keine ein-
deutige Nebenbedingung in die Hauptbedingung einsetzen kann. Man muss daher
eine andere Moglichkeit finden, um die Nebenbedingung in die Hauptbedingung zu
inkludieren.

Erste Mdéglichkeit: Lagrange-Multiplikatoren

Bei dieser Methode muss man die Nebenbedingung zunédchst so umformen, dass auf
einer Seite eine Null steht. Das geht immer, indem man eine Seite der Gleichung
von der anderen abzieht. Man kommt damit auf die Gleichung

X2+y2—rt=0 (9)
Da jetzt die rechte Seite der Nebenbedingung gleich 0 ist, kann man die linke Seite

(oder ein Vielfaches davon) zur Formel dazuzdhlen oder von der Formel abziehen,
ohne dass sich die Formel dndert. Somit kommt man auf die allgemeinere Bedingung:

/E VE2(8) + y2(t) + 22(t)dt + A2 + y? — r?) = min. (10)
JA

In dieser Formel ist die urspriingliche Hauptbedingung enthalten (der Spezialfall,
dass A = 0 gilt). Es ist auch die Mgglichkeit enthalten, dass man ein Vielfaches
der Nebenbedingung abzieht, weil A negativ sein kann. Den Faktor A nennt man
Lagrange-Multiplikator.

Bei der Minimumstelle muss die Ableitung in jeder Richtung 0 sein. Die Koordinate
nach der man ableitet, wir werden sie als ¢ bezeichnen, darf an jeder Stelle in jede
beliebige Richtung gehen. Die Funktion 7)(x, y, z) gibt an jeder Stelle an, in welche
Richtung die e-Koordinate geht. Damit der Weg minimal ist, muss die Ableitung
nach e fiir alle Funktionen n(x, y, z) gleich 0 sein.

Hinzufiigen der Variation jeder Koordinate in Richtung der Funktion n(x) ergibt

E
/A VA en)? + (7 + en)? + (2 + en)?dt + M(x + en)® + (y + en)® — r*) = min.
(11)

Die Konstante r wird nicht variiert, weil der Weg laut Angabe auf dem Zylinderman-
tel bleiben muss. Dort wo die Koordinaten in der Gleichung abgeleitet vorkommen,
wird auch die Variation mitabgeleitet. Die Koordinate € wird dabei bereits als kon-
stant angenommen, weil wir beim Ableiten nach € sowieso nur eine infinitesimal
kleine Anderung entlang der e-Koordinate betrachten.

Die innerste Ableitung nach e ist unabhangig von der Funktion bei jeder Koordinate
7 und bei jeder abgeleiteten Koordinate 7). Die duRere Ableitung ist die Ableitung
der Funktion nach derjenigen Ortskoordinate, bei der n dazugezédhlt wurde. Da 7
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zu jeder Koordinate dazugezahlt wurde, erhdlt man fiir jede Ortskoordinate q jeder
Funktion f die Gleichung

5 [F EsF of
—_— f f - A = — 7. p— ]_2
56//4 (g+en)+f(q+en)dt /A 5qn+5qndt 0 (12)

Der Buchstabe q steht fiir die verallgemeinerte Ortskoordinate, das heifit fiir diesen
Buchstaben werden nacheinander die Buchstaben x, y und z eingesetzt, sodass man
auf 3 Gleichungen kommt. Man kann aufgrund der Summenregel in jeder dieser 3
Gleichungen das Integral vor der Summe auseinanderziehen

= dt+/ idt=0 (13)
B 5q

Um 7 herauszuheben, integrieren wir nur das zweite Integral, wobei wir die partielle
Integration so ausfithren, dass 7 integriert wird.

[ L ot [ 2o =o (14)

Die Funktion 7 ist sowohl am Anfangspunkt A als auch am Endpunkt E immer
0, weil Anfangs- und Endpunkt vorgegeben sind. (An diesen Stellen kann man die
Koordinaten nicht variieren). Dadurch fallt der mittlere Term sowohl beim Einsetzen
von E, als auch beim Einsetzen von A weg und man erhilt die kiirzere Gleichung

Eof d of
i %ndt—/A GGt =0 (15)

Die einzige Koordinate, die wir noch nicht variiert haben, ist die Zeitkoordinate
t (weil es nur eine Zeitrichtung gibt, braucht man in diese Richtung nicht variie-
ren. Ableiten der Gleichung nach t fiihrt dazu, dass das Integral in beiden Termen
verschwindet.

of d 6f

5q" " @l =0 (16)

Wenn die Funktion 7 0 ist, ist die Ableitung nach ¢ immer 0, weil dann die Funktion
gar nicht variiert wird. Wenn die Funktion 1 nicht 0 ist, darf man die Gleichung
durch n dividieren und erhilt die Gleichung

of d of

—_ _ 7(5q

g dt )=0 (17)

Diese Gleichung wird als Euler-Lagrange-Gleichung bezeichnet.

Bei der Orts- und Geschwindigkeitsabeleitung handelt es sich um eine partielle Ab-
leitung (das heilit eine Ortskoordinate, die von einer Geschwindigkeit abhingt oder
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eine Geschwindigkeitskoordinate die von einem Ort abhdngt, wird als Konstante be-
trachtet).

Das liegt daran, dass dieser Teil der Formel ausschliellich von der duBeren Ableitung
nach € kommt, die inneren Ableitungen haben wir alle gekiirzt.

Lediglich die Zeitableitung ist eine totale Ableitung (wenn Orte und Geschwindig-
keiten nach der Zeit abgeleitet werden, fallen diese nicht weg sondern werden zu
Geschwindigkeiten bzw. Beschleunigungen).

Um die Euler-Lagrange-Gleichung auf Gleichung 9 anzuwenden, muss man diese
zundchst nach allen Orts- und Geschwindigkeitskoordinaten ableiten

5F

5 = M (18)
5f

o _ 1
5y 2y (19)
5F

5 =0 (20)
of 2 (21)
Ox /52 +y2 122

o _ (22)
oy VX2 4 y?+ 22

f 2;

of _ 22 (23)

6z 2+ 2 + 22
Einsetzen dieser Gleichungen in die Euler-Lagrange-Gleichung ergibt das Differen-
tialgleichungssystem

0
x- L FE )y _ (24)
dt /x2 4+ y2 4+ 22
d 2y
Dy — (=) = 0 2
w e 29)
d 23
z -0 (26)

’E(—ﬁwuz?)

Berechnen der Zeitableitungen ergibt die Lagrangegleichungen 1.Art

2% 2X(2x% + 2y + 227)

2Ax — + 0 27
VR +22 (R4 2)3 @)
2y 2y(2xx + 2yy + 2zZ
SV S, (COER VER A (28)
\/)-(2 +)'/2 122 \/(x2+y2+z2)3
2z 22(2)'()"( +2yy + 222) 0 (29)

- +
\/)'(2 _|_}',2_|_22 \/()'(2+y2+22)3

Die Lagrangegleichungen sind Differentialgleichungen 2. Ordnung, die man erhilt,
wenn man Haupt- und Nebenbedingung in die Euler-Lagrange-Gleichungen einsetzt.
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Im Allgemeinen kann man diese Gleichungen nicht |6sen. Dieses Problem kann man
umgehen, indem man Hamilton- statt Lagrangegleichungen aufstellt. (ein Skriptum
tiber die Hamiltongleichungen ist in Planung)

Ubungsaufgabe 2

Stelle die Lagrangegleichungen 1. Art fiir den kiirzesten Weg auf einer Kugelober-
flache auf.

Link zur Losung

Zweite Moglichkeit: Generalisierte Koordinaten

Die zweite Moglichkeit, wie man die Nebenbedingung in die Gleichung inkludiert,
funktioniert, indem man die Koordinaten so legt, dass sie gar nicht in ein Gebiet
fihren, in dem die Nebenbedingungen nicht erfiillt sind.

Im obigen Beispiel geht das relativ leicht, weil man die Zylinderkoordinaten ¢ und z
verwenden kann. Die r-Koordinate Idsst man mit Absicht weg, weil die r-Koordinate
auf der Zylinderoberfliche konstant ist und wir daher keine Variation entlang der
r-Koordinate vornehmen wollen.

Im allgemeinen muss man sich iiberlegen, auf welchem Teilraum sich die Bewegung
abspielen kann und dann Koordinaten wahlen, die jede Stelle des Teilraums errei-
chen, aber nicht aus dem Teilraum hinausgehen. Das erfordert mitunter einiges an
Vorstellungskraft.

Wenn man passende Koordinaten gefunden hat, ist der Rechenweg jedoch deutlich
kiirzer als mit Lagrange-Multiplikatoren: Man muss nach weniger Koordinaten ab-
leiten und bekommt dadurch ein kleineres Differentialgleichungssystem.

Um die Hauptbedingung in den neuen Koordinaten anzugeben, bendtigt man die
passenden Umrechnungsformeln. In unserem Beispiel sind das die bekannten Um-
rechnungsformeln in Zylinderkoordinaten.

x(t) = Rcoso(t) (30)
y(t) = Rsing(t) (31)
z(t) = z(t) (32)

Der Faktor R ist dabei in dem Fall keine Koordinate sondern eine Konstante (Des-
halb auch keine t-Abhangigkeit). Ableitung dieser Gleichungen nach t fiihrt auf die
Umrechnungsformeln fiir X, y und z

x(t) = fRsingZ)(t)_gZ)(t) (33)
y(t) = Reosp(t)e(t) (34)
z(t) = z(t) (35)
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Diese Formeln kann man in Gleichung 7 einsetzen, um diese in Zylinderkoordinaten
darzustellen.

E
/ \/ R2sin2¢p¢? + R2cos?pd? + z2dt (36)
A

Herausheben des Faktors r2¢? aus den ersten zwei Termen fiihrt auf die Gleichung

E
/ \/R%Q(sin% + cos2¢) + z2dt (37)
A

Der Faktor sin®¢ + cos®¢ ist der Pythagoras am Einheitskreis. Dieser ergibt immer
1, sodass die Formel fiir das Wegintegral in Zylinderkoordinaten

/A : \/ R2¢2 + 22dt (38)

lautet.

An und fiir sich hatte man sich die Formel auch einfacher iiberlegen kdnnen: Die
Zylinderkoordinaten stehen nach wie vor im rechten Winkel aufeinander, sodass man
immer noch den Pythagoras anwenden kann. Nur die Anderung entlang der Win-
kelkoordinate muss man mit dem Radius multiplizieren, damit sie wie die anderen
Einheiten in Meter und nicht in Bogenmal skaliert werden.

Das Verstandnis der Herleitung mit Hilfe der Umrechnungsformel ist dennoch sinn-
voll, weil man manchmal auch kompliziertere Koordinaten verwenden muss, bei
denen die Herleitung aus der Umrechnungsformel leichter ist.

Die Variation entlang der e-Koordinate ist analog wie bei der Methode mit den
Lagrange-Multiplikatoren, schlielllich ist es egal, welche Hauptbedingung man va-
riiert und in welchen Koordinaten man diese angibt. Man erhilt dadurch dieselben
Euler-Lagrange-Gleichungen in die man wie gewohnt die Hauptbedingung einsetzt.

Ableiten der Hauptbedingung nach allen Geschwindigkeitskoordinaten fiihrt auf.

s _ R (39)
00 \/ R242 + 22
oF oz 40)

N Py

Die Ableitung nach den Ortskoordinaten ist 0, weil diese Unbekannten in der Glei-
chung nicht vorkommen. Einsetzen dieser Beziehungen in die Euler-Lagrange-Gleichungen
ergibt
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1(7*% ) = 0 (41)
dt /R2(¢2 + 22
H——) = 0 42)

7(7
dt’ [redp 1 2

Bilden der zeitlichen Ableitungen fiihrt auf die Lagrangegleichungen 2. Art

Pé | RPOQRRO+222) (43)
/R242 + 72 ( /(R2q'52 + 72)3
b4 N zZ(2R%*p¢ + 222) 0 (44)

\/de)z 432 \/(R2¢2 + 22)3
Das Losen des Gleichungssystems wiirde auf dieselben Bewegungsgleichungen wie
bei den Lagrangegleichungen 1. Art fiihren.

Ubungsaufgabe 3

Stelle die Lagrangegleichungen 2. Art fiir den kiirzesten Weg auf einer Kugelober-
flache auf.

Link zur Losung

Anwendung: Prinzip der stationdren Wirkung

Bei den bisherigen Beispielen haben wir jeder Funktion eine Ldnge zugeordnet.
Man kann den Funktionen jedoch auch beliebige andere Werte (zum Beispiel die
Wirkung) zuordnen. Man setzt dafiir in die Hauptbedingung statt dem Wegintegral
die Formel fiir die Wirkung ein.

I’T7V2

E
-t / F(x)dx = stationar (45)
A
Diese Formel nennt man Lagrangefunktion und man kiirzt sie mit dem Buchstaben
L ab. Wenn man die Variationsrechnung auf die Lagrangefunktion anwendet, be-
kommt man einen Weg, an dem die Wirkung minimal, maximal oder eine Sattelstelle
(also stationar) ist. Da das Prinzip der stationdren Wirkung laut unseren bisherigen
Erfahrungen immer erfiillt ist, erhdlt man genau die physikalisch moglichen Wege.

Ubungsaufgabe 4

Leite durch Anwendung der Euler-Lagrange-Gleichungen auf die Lagrangefunktion
die Formel fiir die Kraft her

Link zur Losung
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Zwangsbedingungen

Zwangsbedingungen sind das Analogon zu Nebenbedingungen. Diese treten dann
auf, wenn eine Kraft (man nennt sie Zwangskraft) zu einer Einschrankung der Be-
wegungsmoglichkeiten fiihrt.

Wenn man beispielsweise ein Pendel im Gravitationsfeld betrachtet, wirkt zusatzlich
zur Gravitationskraft (die das Pendel zum Schwingen bringt) die Kraft des Fadens,
die jeden Teil des Pendels auf einem konstanten Radius zum Aufhdngepult hélt.

Die Gravitationskraft fiihrt zur Bewegung. Diese muss man daher als F(x) in das
Prinzip der stationdren Wirkung einsetzen. Im Gegensatz dazu fiihrt die Kraft des
Fadens nur zu einer Einschrinkung der Bewegung. Sie ist daher eine Zwangskraft,
die durch eine Zwangsbedingung angegeben wird.

Naturlich bedeutet das nicht, dass das Pendel immer halt. In tatsachlichen An-
wendungen muss man erst messen, ob das Pendel alle auftretenden Krifte aushilt,
bevor man die Lagrangegleichungen aufstellen kann.

Wenn man die Lagrangegleichungen 1. Art verwendet, addiert man gewissermalen
alle Kréfte. Bei den Kriften, die eine Bewegung auslésen, kennt man Beschleuni-
gung und Richtung. Diese kann man ohne X als Hauptbedingung addieren. Bei den
Kraften, die die Bewegung einschrdnken, kennt man nur die Richtung. Diese muss
man mit der unbekannten Variable A multiplizieren.

Da man im Verlauf der Rechnung auch A erhidlt, kann man die Starke der Zwangs-
kraft mit Hilfe der Lagrangegleichungen 1. Art ebenfalls berechnen. Diese muss
immer genauso grol sein, dass sie die Krafte, die den Korper aus der erzwungenen
Bahn zu driicken versuchen, ausgleicht.

Wenn man die Lagrangegleichungen 2. Art verwendet, betrachtet man nur die Orte,
auf denen sich das Pendel bewegen kann (also nur die Oberflache der Kugel mit
dem Mittelpunkt im Aufhdngepunkt). Als Koordinaten kann man ¢ und 6 in Kugel-
koordinaten verwenden. Die Anzahl der notwendigen Koordinaten bezeichnet man
als Freiheitsgrade, in diese Richtungen hat das Pendel gewissermallen die Freiheit
sich zu bewegen.

Es gibt auch Zwangskrafte, die man weder mit Hilfe von Lagrange-Multiplikatoren
noch mit Hilfe von generalisierten Koordinaten in die Hauptbedingung integrieren
kann. Diese werden als Anholonome Zwangsbedingungen bezeichnet und durch eine
Ungleichung dargestellt.

Ein Beispiel fiir eine anholonome Zwangsbedingung ist ein Teilchen, das durch einen
Boden vom Herunterfallen abgehalten wird. Wenn sich der Boden bei der Stelle z=0
befindet, lautet die Zwangsbedingung z>0.

Diese Zwangsbedingung kann man nicht zur Lagrangegleichung dazuzihlen, weil
auf der einen Seite der Gleichung immer auch etwas hdheres als 0 stehen kann.
Auch die Einfiihrung von generalisierten Koordinaten ist nicht moglich, weil nicht
die Anzahl der Koordinaten, sondern nur die Distanz entlang einer Koordinate durch
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die Zwangsbedingung eingeschrankt wird.

Man kann ein derartiges System nicht mit dem Lagrangeformalismus I6sen, sondern
benstigt StoRgesetze und Elastizititseigenschaften. Das Losen der Bewegungsglei-
chung fiir anholonome Zwangsbedingungen geht iiber den Stoff des Skriptums hin-
aus.

Bei holonomen Zwangsbedingungen (also denen, die sich fiir den Lagrangeforma-
lismus eignen) gilt, dass jede Zwangsbedingung einen Freiheitsgrad reduziert. Am
Beginn hat jeder der beteiligten Korper drei Freiheitsgrade, die Zahl der Freiheits-
grade betrdgt also immer 3K-Z, wobei K die Anzahl der beteiligten Korper und Z
die Anzahl der Zwangsbedingungen darstellt.

Wenn man die generalisierten Koordinaten aufstellt, kann man sich iiberlegen, ob
man ausreichend aber nicht zu viele Koordinaten angibt. Dadurch kann man ver-
meiden, dass man eine Koordinate oder eine Einschrankung vergisst.

Ubungsaufgabe 5

Ein Korper rollt auf einer schiefen Ebene mit einer Neigung von 45° abwarts.
Er ist auf einer Schiene eingespannt. Die Anordnung befindet sich in Erdnihe
(Man darf die Gravitationsbeschleunigung als konstant mit g=10% nach unten
nahern). Berechne die Zwangskraft, die Freiheitsgrade und die Lagrangegleichungen

Link zur Losung

10
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Lésungen der Ubungsaufgaben

Ubungsaufgabe 1
Die Hauptbedingung ist die Umfangformel

A+ B = min.

Die Nebenbedingung ist die Flachenformel

AB=F

Einsetzen der Nebenbedingung in die Hauptbedingung

F
A—|—Z:max.

Ableitung nach A

Umformung nach A

A=VF

Einsetzen von A in die Anfangsbedingung

VFB=F

Umformung nach B

B=+F

Berechnung der zweiten Ableitung

2F

E>0

A = B = +/F ist eine Minimumstelle

Ubungsaufgabe 2

Die Hauptbedingung ist wieder das Wegintegral

/E V/x2(t) + y2(t) + 22(t)dt = min.
A

11

(49)

(54)
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Die Nebenbedingung ist diesmal die Kugelformel

X2ty = 12

Subtraktion von r?

P 4+yP+22-r*r=0

Addieren der Nebenbedingung mit Lagrange-Multiplikatoren

E
/ VI + 72+ 22dt + A(C + v + 22 — 1) = min,
A

Berechnung der Ableitung nach allen Koordinaten

of

67 = 2\x

of

— = 2\

oy Y

of

- = 9

g Az

ﬁ B 2x

ox /x2 4+ y2 + 2
of 2y

oy VX2 4y 4 22
of 2z

oz NEESZ

Einsetzen der Ableitungen in die Euler-Lagrange-Gleichungen

d 2x
DX — () = 0
dt" . /x2 +y2 4 22
d 2y
SV S A R,
dt* /32 +y2 + 22
d 2z
2\z — (—Z) -
dt* /32 +y2 + 22
Partielle Ableitung nach der Zeit ergibt die Lagrangegleichungen
Dx 2x  2X(2xx + 2yy +222) ~ 0
\/)'(2_|_)',2_|_22 \/(x2 _|_)',2_|_22)3
2y — 2y B 2)'/(2)'<->"<—|—2-)'/j?—|—-222) — 0
\/)'(2 _|_y2+z2 \/(X2+y2+22)3
g — 2z | 22(2xk 4 2yy +222) — 0

\/)'(2 _,_)',2_’_22 \/()'(2+y2+22)3

12

(57)
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Ubungsaufgabe 3

Verwendung von Kugelkoordinaten mit der Konstanten R

x(t) = Rsinf(t)cosd(t) (70)

y(t) = Rsinf(t)sing(t) (71)

z(t) = Rcos(t) (72)

Ableitung der Umrechnungsformel nach t

x(t) = Rcost(t)8(t)cosp(t) — Rsind(t)sing(t)e(t) (73)

y(t) = Rcost(t)0(t)sing(t) + Rsinf(t)cose(t)e(t) (74)

2(t) = —Rsinf(t)d(t) (75)

Einsetzen der Formeln gibt unter der Wurzel den Ausdruck

R?cos?06cos’p—  2R2cosOsinfcospsingd  +R2sin*0sin® pd® + (76)

R? cos2992sin2¢+ 2R? cosHsinGcosgbsinqﬁgz.S —|—R2sin20<:052q5gz.52 + (
R?sin?06? (

~N '~
o ~
N N’

Links und rechts Pythagoras am Einheitskreis herausheben
Der mittlere Term fallt in Zeile 76 und 77 ganz weg

E
/ \/R2cos2092 + R2sin20¢? + R2sin2062dt (79)
A

Links und rechts Pythagoras am Einheitskreis herausheben

E
/ \/ R202 4+ R2sin20¢?dt (80)
A

Alternativ hdtte man sich das Wegintegral auch grafisch iiberlegen kénnen

13
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Y

Der Kreis an dem die ¢-Koordinate gemessen wird, hat den Radius Rsinf

Bilden der Ableitungen nach den Ortskoordinaten

g—; -0 (81)
of _ 2R?sinfcostf (82)
00 VR0 + R2sin92
(z _ 2R2sin%0¢ (83)
0¢ VR + R2sin9 2
o 2R% (84)
90 \/R292 + R2sin20¢?

Einsetzen in die Euler-Lagrange-Gleichungen

d 2R2sin%0¢
o (— —) =0 ()
\/R292 + R2sin20¢?
2R2sinfcoshf d 2R20
( ) = 0 (86)

VR + Resinor 9\ [R2g2 4 Resin9 2

14
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Berechnung der Ableitung nach der Zeit

4R?sinB0¢ + 2R?sin*0¢ B 2R25in2¢9¢(2R295 + 2R2sinfcoshfg? + 2R25in20g5)

— =0
\/R292 + R2sin20¢? \/(R292 + R2sin20¢?)3
(87)
2R?sinfcostlf — 2R*6  2R20(2R*66 + 2R?sinfcostf? + 2R?sin*0¢) 0
\ R + Resin?0? V(R262 + Resin?032)3
(88)
Ubungsaufgabe 4
Die Hauptbedingung ist die Formel fiir die Wirkung
2 E
5+ / F(x)dx = stationar (89)
A
Berechnung der Ableitungen
oL
X F(x) (90)
5L
5y =MV (91)
Einsetzen in die Euler-Lagrange-Gleichungen
F(x) — < (mv) =0 (02)
x)— —(mv) =
dt
Berechnung der Zeitableitung
F(x)—ma=0 (93)
Nach F(x) umstellen
F(x) = ma (94)
Ubungsaufgabe 5
Die Kraft ist Masse mal Beschleunigung.
Einsetzen der konstanten Fallbeschleunigung -g ergibt
F(x)=—-mg (95)
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Die Gravitation wirkt nur entlang der z-Koordinate.
Die Formel fiir die Wirkung lautet daher

2 E
m_ / —mgdz
2 A

Berechnung des Integrals

IT)V2

T T mez

Die Zwangsbedingungen lauten

y = C
x = z+K

Man kann den Ursprung des Koordinatensystems so legen,
dass beide Konstanten 0 sind

y =0

X = Zz

Die generalisierte Koordinate ist die um 45° gedrehte x-Koordinate

X=x—2z

Da es zwei Zwangsbedingungen und nur einen Korper gibt,
bendtigt man nur eine Koordinate.

3K—-Z72=3-2=1
Um die Zwangskraft zu berechnen,

muss man die Lagrangegleichungen 1. Art verwenden

2

mv
? +mgz+ iy + )\2(X - Z)

Einsetzen der Betragsformel fiir die Geschwindigkeit

m(x2 +y2 +22)

> + mgz + A1y + Xa(x — 2)

Die Geschwindigkeit in y-Richtung ist laut Angabe 0

m(x? + 22)

> + mgz + A1y + Ma(x — 2)
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Berechnung der Ableitungen

% — (107)
%L/ = M (108)
o= mgn (109)
?—i — mx (110)
g—yL = 0 (111)
% - mz (112)

Zusatzlich miissen auch die Zwangsbedingungen gelten

y =0 (113)
x—z = 0 (114)

Einsetzen in die Euler-Lagrange-Gleichungen

Ao — %(mx) =0 (115)
A o= 0 (116)
mg — Ay — %(mz) =0 (117)

Berechnung der Ableitungen

A—mk = 0 (118)
A = 0 (119)
mg—X—mz = 0 (120)

Umformen nach \,

Ao = mx =mg — mz (121)

Aus der Anfangsbedingung x=z folgt x = 2

A2 = mx = mg — mXx (122)

Umformen des zweiten Teils der Gleichung nach X

=< (123)
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Einsetzen in Gleichung 122

No = % (124)

Multiplikation mit dem Gradient der Zwangsbedingung

Z =0 (125)

1
z = &y (126)
2 \1

Die erste Zwangskraft ist 0. Keine Kraft versucht den Korper aus der Schiene zu
bewegen, folglich muss die Schiene auch keine Kraft ausiiben.

Die zweite Zwangskraft muss die Gravitation durch die schiefe Ebene ausgleichen. In
x-Richtung wirkt die halbe Schwerkraft, damit der Kérper nicht gerade hinunterfallt
und in z-Richtung wirkt die halbe Schwerkraft, damit der Kérper nur mit halber
Geschwindigkeit herunterfillt, sodass die halbe Schwerkraft in x-Richtung geniigt.
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