Theoretische Physik

Noether-Theorem

Das Anwenden der Variationsrechnung auf das Prinzip der stationdren Wirkung
fihrt auf einige physikalische Gesetze und Zusammenhinge. Im Skriptum iiber die
Variationsrechnung wurde beispielsweise der Zusammenhang zwischen Kraft und
Beschleunigung hergeleitet.

Neben solchen bereits bekannten Gesetzmaligkeiten entdeckt man mit dieser Me-
thode auch neue, mit anderen Methoden nicht nachvollziehbare Zusammenhange.
Der wahrscheinlich iiberraschendste ist das Noether-Theorem, ein Zusammenhang
zwischen der kontinuierlichen Symmetrie des Potentials und den ErhaltungsgroRen.

Erkldarung: Symmetrien

Das Wort ,Symmetrie” ist dhnlich wie das Wort Arbeit ein Wort, das in der Physik
etwas anders als im Alltag verwendet wird.

Im Alltag verwendet man meistens das Wort ,symmetrisch” gleichbedeutend mit
spiegelsymmetrisch, das heillt der Kérper dndert sich nicht, wenn er gespiegelt wird.

In der Physik gibt es zusétzlich noch ganz andere Arten von Symmetrien: Beispiels-
weise ist ein Wiirfel symmetrisch beziiglich einer Drehung um 90° oder ein Zylinder
symmetrisch beziiglich einer Drehung entlang der ¢-Koordinate.

Man unterscheidet zwischen kontinuierlichen und diskreten Symmetrien. Bei dis-
kreten Symmetrien gibt es eine konkrete Anzahl von Abbildungen entlang einer
Koordinate (zum Beispiel beim Wiirfel 90°, 180° und 270°), die keine Anderung
auslosen. Bei kontinuierlichen Symmetrien kann man den Korper beliebig weit ent-
lang einer Koordinate drehen, ohne dass sich der Kérper dndert (zum Beispiel ist
beim Zylinder jede Drehung entlang der ¢-Koordinate méglich).

Ein Korper kann auch mehrere Symmetrien gleichzeitig erfiillen. Beispielsweise kann
ein Zylinder nicht nur kontinuierlich in Richtung der ¢-Koordinate, sondern auch
diskret um 180° entlang der #-Koordinate gedreht werden. AuRerdem kann er um
alle Achsen, die in der Mitte durch den Zylinder durchgehen gespiegelt werden.

Ubungsaufgabe 1

Welche Symmetrien gelten fiir einen Kegel?

Link zur Losung


https://www.astronomieskripten.lima-city.de/Astronomieskripten/Physik/TheoretischePhysik/2-Variationsrechnung.htm
https://www.astronomieskripten.lima-city.de/Astronomieskripten/Physik/TheoretischePhysik/1-PrinzipDerStationaerenWirkung.htm
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Anwendung: Gravitationsfeld

Die Stérke des Gravitationsfeldes ist nur von der r-Koordinate abhingig. Eine Dre-
hung des Feldes entlang der ¢-Koordinate oder entlang der #-Koordinate fiihrt zu
keiner Anderung des Feldes. Es handelt sich dabei um kontinuierliche Symmetrie-
achsen.

Man bezeichnet die kontinuierlichen Symmetrieachsen, als zyklische Koordinaten.
Um die kontinuierliche Symmetrie auszunutzen, muss man die generalisierten Ko-
ordinaten so wahlen, dass die zyklischen Koordinaten vorkommen. In dieser Anwen-
dung erreicht man das durch die Wahl von Kugelkoordinaten, deren Ursprung im
Zentrum des Gravitationsfeldes liegt.

Statt dem Betrag der Geschwindigkeit (x* + y2 + z2) in kartesischen Koordinaten
setzt man in die Formel der kinetischen Energie den Betrag in Kugelkoordinaten
ein. Das ist nach wie vor der Pythagoras, weil die Koordinaten immer noch im
rechten Winkel aufeinander stehen. Allerdings muss man die Winkelkoordinaten mit
den jeweiligen Kreisradien multiplizieren, damit die Einheit nach wie vor in Metern
angegeben ist.

Der Radius des Kreises der #-Koordinate entspricht der r-Koordinate, der Radius
des Kreises der ¢-Koordinate ist rsinf
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Beim Einsetzen des Potentials kann man den Vorteil der kontinuierlichen Symmetrie
entlang der ¢-Koordinate und der 6-Koordinate ausnutzen, und muss nur noch eine
r-Abhangigkeit in die Klammer schreiben.
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Die Ableitung nach der ¢-Koordinate und nach der 6-Koordinate ist 0, sodass in

den Lagrangegleichungen dieser Koordinaten nur noch die Ableitungen nach den
Winkelgeschwindigkeiten iiber bleiben.

(7 + r?6° + rsin*0¢%) + U(r) (1)

oL

5 - mr?0 (2)
6—17 = mr’sin®0¢ (3)
o)

Einsetzen dieser Beziehungen in die Euler-Lagrange-Gleichungen fiihrt auf die Glei-
chungen

d .
E(mrzﬂ) =0 (4)
%(mrzsin29q'§) =0 (5)

Da die zeitliche Ableitung der Grolen in den Klammern 0 ist, bedeutet das, dass
die Grolen in den Klammern immer gleich groR bleiben, also erhalten sind. Man
erkennt, dass in beiden Gleichungen das Quadrat des Radius der Kugel mit dem
Impuls entlang der Koordinate multipliziert wird. Es handelt sich bei den GroRen
um die Drehimpulserhaltung entlang beider Koordinaten.

Auch wenn man sich nicht fiir die Erhaltungsgrélen, sondern nur fiir die Bewegungs-
gleichungen interessiert, ist es von Vorteil, wenn man die zyklischen Koordinaten
zum Aufstellen der Lagrangegleichungen verwendet, weil bei zwei Koordinaten die
Ortsableitung ganz weg fallt, sodass die Differentialgleichungen deutlich kiirzer wer-
den.

Ubungsaufgabe 2

Berechne die Erhaltungsgrolen fiir ein zylindersymmetrisches Magnetfeld um einen
geladenen Leiter!

Link zur Losung

Verallgemeinerung: Raum- und Zeitkoordinaten

Im Allgemeinen fiihrt jede kontinuierliche Transformation auf eine ErhaltungsgréRe
und zwar unabhingig davon, ob es sich um Raum- oder Zeitkoordinaten handelt.
Raumkoordinaten

Bei Raumkoordinaten kann man das Noethertheorem zeigen, indem man eine un-
bekannte Ortskoordinate q als zyklisch voraussetzt. Wenn man die generalisierten



Theoretische Physik Noether-Theorem

Koordinaten so wahlt, dass eine der Ortskoordinaten zyklisch ist, kann man in der
Lagrangegleichung fiir die zyklische Koordinate

d oL, oL

E(E) i (6)
den letzten Term 0 setzen. Man erhilt
d oL
E(@) =0 (7)

Das bedeutet, dass man die ErhaltungsgroRe erhilt, indem man die Lagrangeglei-
chung nach der Geschwindigkeit entlang der zyklischen Koordinate ableitet. Man
bezeichnet diese Grole als kanonischen Impuls. Bei kartesischen Koordinaten han-
delt es sich um den gewdhnlichen Impuls entlang der zyklischen Koordinate, bei zu
Kreisen verdrehten Koordinaten um den Drehimpuls entlang der zyklischen Koordi-
nate.

Zeitkoordinate

Eine kontinuierliche Symmetrie entlang der Zeitkoordinate ist immer dann vorhan-
den, wenn sich das Potential im Verlauf der Zeit nicht verdndert. In dem Fall kann
man beliebige generalisierte Koordinaten verwenden. Die einzige Anderung ist, dass
das Potential nur noch von den Ortskoordinaten und nicht mehr von der Zeitkoor-
dinate abhdngt.

:2
mg
o U(q) (8)
Man konnte jetzt auf die ldee kommen, dass man den ersten Term der Lagrange-
funktion %(%) 0 setzt. Das geht jedoch nicht, weil die Geschwindigkeit nach wie

vor zeitabhdngig sein kann (der Korper befindet sich nicht immer an der gleichen
Stelle des Potentials). Die Ableitung eines konstanten Potentials nach einer zeitab-
hdngigen Geschwindigkeit ist zeitabhangig.

Man kann aber einen anderen Trick verwenden: Wenn man die Lagrangefunktion
nach der Zeit ableitet, muss die ErhaltungsgroRe gleich 0 sein. Da die Zeitkoordinate
nur implizit im Ort und in der Geschwindigkeit vorkommt, erhilt man die duRere
Ableitung nach dem Ort und nach der Geschwindigkeit. Als innere Ableitung des
Ortes erhdlt man die Geschwindigkeit und als innere Ableitung der Geschwindigkeit
die Beschleunigung

dl oL, L.
P %q + @q (9)

Um die Erhaltungsgrofe zu berechnen, muss man die Euler-Lagrange-Gleichungen

einbeziehen. Diese kann man nach dem Term g—f] umformen
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sLd 6L

= (= 1
5q ~ di'sq) (10)
und das Ergebnis in Gleichung 9, statt dem %—Term einsetzen.
dl d 6L oL
—q 11
gt~ dt'sq) T 50 (1)

Man kann im rechten Teil der Gleichung die Kettenregel erkennen: Im ersten Term
steht der kanonische Impuls nach der Zeit abgeleitet und die Geschwindigkeit nor-
mal, im zweiten Term die Geschwindigkeit nach der Zeit abgeleitet und der kanoni-
sche Impuls normal. Damit verkiirzt sich die Gleichung zu

dL d (5L

Man kann den linken Teil der Gleichung von der rechten Seite abziehen. Da dieser
ebenfalls eine Zeitableitung ist, kann man ihn mittels Summenregel ins Integral
schreiben.

d oL
—(Z=g=L)=0 13
S0 (13
Der Term innerhalb der Klammer ist nach der Zeit abgeleitet 0 und folglich eine Er-
haltungsgroBe. Um die physikalische Bedeutung zu sehen, kann man die allgemeine
zeitunabhangige Lagrangefunktion in die Gleichung einsetzen.

) )
. mq mq

mg? — ==+ U(q) = 5 + U(9) = Euin + Epor = Eges (14)

Aus einem zeitunabhingigen Potential folgt die Energieerhaltung. Das ist wenig

tberraschend, weil sich bei einem konstanten Potentialfeld die Kraft nicht dndert

und daher keine zusitzliche Energie ausgelGst oder vorhandene Energie vernichtet

werden kann.

Allgemeiner Vorgang

Manchmal ist es garnicht moglich, die generalisierten Koordinaten so zu wéhlen,
dass die zyklische Koordinate darin vorkommt, zum Beispiel weil sich die zyklischen
Koordinaten zeitlich verdndern. In so einem Fall ist es gut, wenn man einen Vorgang
kennt, mit dem man die jeweilige Erhaltungsgrofle aus der kontinuierlichen Trans-
formation herleiten kann, ohne die Koordinaten zu idndern.

Wenn die zyklische Koordinate eine reine Raumkoordinate ist, lautet die Formel:

oL §q,
Z 6q; 56 (15)
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Wenn es sich um eine reine Zeitkoordinate handelt, lautet die Formel:

. 5L ot
L— —)— = 16
Dol gl (16)
Wenn die zyklische Koordinate weder entlang der Raum- noch entlang der Zeitko-
ordinate konstant ist, werden die Formeln 15 und 16 addiert.

Um die Formel anzuwenden, berechnet man zuerst den Wert § bzw. . Das Dach
tiber dem Zeichen bedeutet: "Die Auswirkung auf die q bzw. t-Koordinate, wenn
man das System um einen beliebig kleinen Faktor ¢ entlang der zyklischen Koordi-
nate verschiebt."

Wenn beispielsweise die ¢-Zylinderkoordinate zyklisch ist und man die Anderung in

kartesischen Koordinaten angeben mdchte, dreht man den Vektor mit der Drehma-
trix um den Winkel €

x\ [cose sine\ [ xcose — ysine (17)
y ) \-sine cose/ = \xsine + ycose

und erhilt damit nach der Drehung die Koordinaten

x>
|

Xcose — ysine (18)
Xsine + ycose (19)

<>
I

Als nichstes leitet man die Funktion nach ¢ ab und setzt anschlieBend ¢ = 0.
Dadurch erhilt man die infinitesimale Anderung der Lagrangefunktion entlang der
zyklischen Koordinate an der Stelle € = 0. Diese Werte setzt man fiir alle Koordi-
naten in die Formel 15 bzw. 16 ein.

Ubungsaufgabe 3

Berechne die Impuls-, Drehimpuls- und Energieerhaltung mit dem allgemeinen
Vorgang in den kartesischen Koordinaten!

Link zur Losung
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Lésungen der Ubungsaufgaben

Ubungsaufgabe 1

Kontinuierliche Symmetrie entlang der ¢-Koordinate
Spiegelsymmetrie um alle Achsen in der Mitte des Kegels

Ubungsaufgabe 2

Verwendung von Zylinderkoordinaten

TP+ 26+ 2) 4+ U(r) (20)

Bilden der Ableitung nach ¢ und z

gg = mr’¢ (21)
SL
53 = Mz (22)

Einsetzen in Lagrangegleichungen

Drehimpulserhaltung entlang der ¢-Koordinate
Impulserhaltung entlang der z-Koordinate

Ubungsaufgabe 3

Da man immer die kartesischen Koordinaten verwenden soll, ist die Ableitung der
Lagrangefunktion nach der Geschwindigkeit in allen Fallen mg

Die Impulserhaltung folgt aus der Verschiebung entlang einer kartesischen Koor-
dinate, das heilit bei der Verschiebung wird zu dieser Koordinate € dazugezihlt

Gg=q+e (25)

Die Ableitung von g nach € ist 1. Bei allen anderen Koordinaten verschiebt sich
tiberhaupt nichts, sodass kein ¢ vorkommt und die Ableitung nach e folglich 0 ist.
Ubrig bleibt folglich nur mehr mg und das ist der Impuls entlang der g-Koordinate

Die Drehimpulserhaltung folgt aus der Verschiebung entlang des Winkels. In kar-
tesischen Koordinaten ist das die Multiplikation mit der Drehmatrix
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x\ [ cose sine XCOS€ — ysine
. = . (26)
y -SIn€e  Cose Xsine + ycose

Vergleich der Eintrage liefert:

x>

Xcose — ysine (27)

= xsine + ycose (28)

<>

Fiir die z-Koordinate gilt 2 = z, weil sich die durch das Drehen entlang des Winkels
nicht dndert. Ableiten nach ¢ ergibt:

ds
d—: = —xsine — ycose (29)
do

d—}e/ = Xcose — ysine (30)
dz

@ _ 31
1 (31)

Einsetzen von e = 0 fithrt zu den Werten -y und x. Multipliziert mit der Ableitung der
Lagrangefunktion nach der Geschwindigkeit und aufsummiert erhdlt man —mxy +
myx. Umformen fiihrt zur Gleichung m(xy — yX) und das ist die z-Komponente des
Drehimpulses:

X x m(yz — zy)
rxmv=|y]|xm|y]|] =1 mzx—xz) (32)
z z m(xy — yx)

Man erhilt die z-Komponente deshalb, weil man die Drehung in der xy-Ebene, also
um die z-Achse, ausgefithrt hat. Wenn man die Drehung in einer anderen Ebene
ausfiihrt, erhidlt man ganz analog die anderen Komponenten des Drehimpulses, das
sind die Drehungen um die anderen Achsen.

Die Energieerhaltung folgt aus der Verschiebung entlang der t-Koordinate, das
heiBt bei der Verschiebung wird zu dieser Koordinate e dazugezihlt.

t=t+e (33)

Die Ableitung nach e ist eins, so dass in allen Koordinaten mg iiberbleibt.

. mg
- Epot — mq = _Tq - Epot = _(Ekin + Epot) =—E (34)

mq
2

Wenn -E konstant ist, ist auch E konstant.



