
Theoretische Physik

Noether-Theorem

Das Anwenden der Variationsrechnung auf das Prinzip der stationären Wirkung
führt auf einige physikalische Gesetze und Zusammenhänge. Im Skriptum über die
Variationsrechnung wurde beispielsweise der Zusammenhang zwischen Kraft und
Beschleunigung hergeleitet.

Neben solchen bereits bekannten Gesetzmäÿigkeiten entdeckt man mit dieser Me-
thode auch neue, mit anderen Methoden nicht nachvollziehbare Zusammenhänge.
Der wahrscheinlich überraschendste ist das Noether-Theorem, ein Zusammenhang
zwischen der kontinuierlichen Symmetrie des Potentials und den Erhaltungsgröÿen.

Erklärung: Symmetrien

Das Wort �Symmetrie� ist ähnlich wie das Wort Arbeit ein Wort, das in der Physik
etwas anders als im Alltag verwendet wird.

Im Alltag verwendet man meistens das Wort �symmetrisch� gleichbedeutend mit
spiegelsymmetrisch, das heiÿt der Körper ändert sich nicht, wenn er gespiegelt wird.

In der Physik gibt es zusätzlich noch ganz andere Arten von Symmetrien: Beispiels-
weise ist ein Würfel symmetrisch bezüglich einer Drehung um 90◦ oder ein Zylinder
symmetrisch bezüglich einer Drehung entlang der φ-Koordinate.

Man unterscheidet zwischen kontinuierlichen und diskreten Symmetrien. Bei dis-
kreten Symmetrien gibt es eine konkrete Anzahl von Abbildungen entlang einer
Koordinate (zum Beispiel beim Würfel 90◦, 180◦ und 270◦), die keine Änderung
auslösen. Bei kontinuierlichen Symmetrien kann man den Körper beliebig weit ent-
lang einer Koordinate drehen, ohne dass sich der Körper ändert (zum Beispiel ist
beim Zylinder jede Drehung entlang der φ-Koordinate möglich).

Ein Körper kann auch mehrere Symmetrien gleichzeitig erfüllen. Beispielsweise kann
ein Zylinder nicht nur kontinuierlich in Richtung der φ-Koordinate, sondern auch
diskret um 180◦ entlang der θ-Koordinate gedreht werden. Auÿerdem kann er um
alle Achsen, die in der Mitte durch den Zylinder durchgehen gespiegelt werden.

Übungsaufgabe 1

Welche Symmetrien gelten für einen Kegel?

Link zur Lösung

https://www.astronomieskripten.lima-city.de/Astronomieskripten/Physik/TheoretischePhysik/2-Variationsrechnung.htm
https://www.astronomieskripten.lima-city.de/Astronomieskripten/Physik/TheoretischePhysik/1-PrinzipDerStationaerenWirkung.htm
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Anwendung: Gravitationsfeld

Die Stärke des Gravitationsfeldes ist nur von der r-Koordinate abhängig. Eine Dre-
hung des Feldes entlang der φ-Koordinate oder entlang der θ-Koordinate führt zu
keiner Änderung des Feldes. Es handelt sich dabei um kontinuierliche Symmetrie-
achsen.

Man bezeichnet die kontinuierlichen Symmetrieachsen, als zyklische Koordinaten.
Um die kontinuierliche Symmetrie auszunutzen, muss man die generalisierten Ko-
ordinaten so wählen, dass die zyklischen Koordinaten vorkommen. In dieser Anwen-
dung erreicht man das durch die Wahl von Kugelkoordinaten, deren Ursprung im
Zentrum des Gravitationsfeldes liegt.

Statt dem Betrag der Geschwindigkeit (x2 + y2 + z2) in kartesischen Koordinaten
setzt man in die Formel der kinetischen Energie den Betrag in Kugelkoordinaten
ein. Das ist nach wie vor der Pythagoras, weil die Koordinaten immer noch im
rechten Winkel aufeinander stehen. Allerdings muss man die Winkelkoordinaten mit
den jeweiligen Kreisradien multiplizieren, damit die Einheit nach wie vor in Metern
angegeben ist.

Der Radius des Kreises der θ-Koordinate entspricht der r-Koordinate, der Radius
des Kreises der φ-Koordinate ist rsinθ

Beim Einsetzen des Potentials kann man den Vorteil der kontinuierlichen Symmetrie
entlang der φ-Koordinate und der θ-Koordinate ausnutzen, und muss nur noch eine
r-Abhängigkeit in die Klammer schreiben.
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m

2
(ṙ2 + r2θ̇2 + r2sin2θφ̇2) + U(r) (1)

Die Ableitung nach der φ-Koordinate und nach der θ-Koordinate ist 0, sodass in
den Lagrangegleichungen dieser Koordinaten nur noch die Ableitungen nach den
Winkelgeschwindigkeiten über bleiben.

δL

δθ̇
= mr2θ̇ (2)

δL

δφ̇
= mr2sin2θφ̇ (3)

Einsetzen dieser Beziehungen in die Euler-Lagrange-Gleichungen führt auf die Glei-
chungen

d

dt
(mr2θ̇) = 0 (4)

d

dt
(mr2sin2θφ̇) = 0 (5)

Da die zeitliche Ableitung der Gröÿen in den Klammern 0 ist, bedeutet das, dass
die Gröÿen in den Klammern immer gleich groÿ bleiben, also erhalten sind. Man
erkennt, dass in beiden Gleichungen das Quadrat des Radius der Kugel mit dem
Impuls entlang der Koordinate multipliziert wird. Es handelt sich bei den Gröÿen
um die Drehimpulserhaltung entlang beider Koordinaten.

Auch wenn man sich nicht für die Erhaltungsgröÿen, sondern nur für die Bewegungs-
gleichungen interessiert, ist es von Vorteil, wenn man die zyklischen Koordinaten
zum Aufstellen der Lagrangegleichungen verwendet, weil bei zwei Koordinaten die
Ortsableitung ganz weg fällt, sodass die Di�erentialgleichungen deutlich kürzer wer-
den.

Übungsaufgabe 2

Berechne die Erhaltungsgröÿen für ein zylindersymmetrisches Magnetfeld um einen
geladenen Leiter!

Link zur Lösung

Verallgemeinerung: Raum- und Zeitkoordinaten

Im Allgemeinen führt jede kontinuierliche Transformation auf eine Erhaltungsgröÿe
und zwar unabhängig davon, ob es sich um Raum- oder Zeitkoordinaten handelt.

Raumkoordinaten

Bei Raumkoordinaten kann man das Noethertheorem zeigen, indem man eine un-
bekannte Ortskoordinate q als zyklisch voraussetzt. Wenn man die generalisierten
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Koordinaten so wählt, dass eine der Ortskoordinaten zyklisch ist, kann man in der
Lagrangegleichung für die zyklische Koordinate

d

dt
(
δL

δq̇
)− δL

δq
= 0 (6)

den letzten Term 0 setzen. Man erhält

d

dt
(
δL

δq̇
) = 0 (7)

Das bedeutet, dass man die Erhaltungsgröÿe erhält, indem man die Lagrangeglei-
chung nach der Geschwindigkeit entlang der zyklischen Koordinate ableitet. Man
bezeichnet diese Gröÿe als kanonischen Impuls. Bei kartesischen Koordinaten han-
delt es sich um den gewöhnlichen Impuls entlang der zyklischen Koordinate, bei zu
Kreisen verdrehten Koordinaten um den Drehimpuls entlang der zyklischen Koordi-
nate.

Zeitkoordinate

Eine kontinuierliche Symmetrie entlang der Zeitkoordinate ist immer dann vorhan-
den, wenn sich das Potential im Verlauf der Zeit nicht verändert. In dem Fall kann
man beliebige generalisierte Koordinaten verwenden. Die einzige Änderung ist, dass
das Potential nur noch von den Ortskoordinaten und nicht mehr von der Zeitkoor-
dinate abhängt.

mq̇2

2
− U(q) (8)

Man könnte jetzt auf die Idee kommen, dass man den ersten Term der Lagrange-
funktion d

dt (
δL
δq̇ ) 0 setzt. Das geht jedoch nicht, weil die Geschwindigkeit nach wie

vor zeitabhängig sein kann (der Körper be�ndet sich nicht immer an der gleichen
Stelle des Potentials). Die Ableitung eines konstanten Potentials nach einer zeitab-
hängigen Geschwindigkeit ist zeitabhängig.

Man kann aber einen anderen Trick verwenden: Wenn man die Lagrangefunktion
nach der Zeit ableitet, muss die Erhaltungsgröÿe gleich 0 sein. Da die Zeitkoordinate
nur implizit im Ort und in der Geschwindigkeit vorkommt, erhält man die äuÿere
Ableitung nach dem Ort und nach der Geschwindigkeit. Als innere Ableitung des
Ortes erhält man die Geschwindigkeit und als innere Ableitung der Geschwindigkeit
die Beschleunigung

dL

dt
=

δL

δq
q̇ +

δL

δq̇
q̈ (9)

Um die Erhaltungsgröÿe zu berechnen, muss man die Euler-Lagrange-Gleichungen
einbeziehen. Diese kann man nach dem Term δL

δq umformen
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δL

δq
=

d

dt
(
δL

δq̇
) (10)

und das Ergebnis in Gleichung 9, statt dem δL
δq -Term einsetzen.

dL

dt
=

d

dt
(
δL

δq̇
)q̇ +

δL

δq̇
q̈ (11)

Man kann im rechten Teil der Gleichung die Kettenregel erkennen: Im ersten Term
steht der kanonische Impuls nach der Zeit abgeleitet und die Geschwindigkeit nor-
mal, im zweiten Term die Geschwindigkeit nach der Zeit abgeleitet und der kanoni-
sche Impuls normal. Damit verkürzt sich die Gleichung zu

dL

dt
=

d

dt
(
δL

δq̇
q̇) (12)

Man kann den linken Teil der Gleichung von der rechten Seite abziehen. Da dieser
ebenfalls eine Zeitableitung ist, kann man ihn mittels Summenregel ins Integral
schreiben.

d

dt
(
δL

δq̇
q̇ − L) = 0 (13)

Der Term innerhalb der Klammer ist nach der Zeit abgeleitet 0 und folglich eine Er-
haltungsgröÿe. Um die physikalische Bedeutung zu sehen, kann man die allgemeine
zeitunabhängige Lagrangefunktion in die Gleichung einsetzen.

mq̇2 − mq̇2

2
+ U(q) =

mq̇2

2
+ U(q) = Ekin + Epot = Eges (14)

Aus einem zeitunabhängigen Potential folgt die Energieerhaltung. Das ist wenig
überraschend, weil sich bei einem konstanten Potentialfeld die Kraft nicht ändert
und daher keine zusätzliche Energie ausgelöst oder vorhandene Energie vernichtet
werden kann.

Allgemeiner Vorgang

Manchmal ist es garnicht möglich, die generalisierten Koordinaten so zu wählen,
dass die zyklische Koordinate darin vorkommt, zum Beispiel weil sich die zyklischen
Koordinaten zeitlich verändern. In so einem Fall ist es gut, wenn man einen Vorgang
kennt, mit dem man die jeweilige Erhaltungsgröÿe aus der kontinuierlichen Trans-
formation herleiten kann, ohne die Koordinaten zu ändern.

Wenn die zyklische Koordinate eine reine Raumkoordinate ist, lautet die Formel:

n∑
i=1

δL

δq̇i

δq̂i
δε
|ε=0 (15)
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Wenn es sich um eine reine Zeitkoordinate handelt, lautet die Formel:

n∑
i=1

(L− δL

δq̇i
)
δt̂

δε
|ε=0 (16)

Wenn die zyklische Koordinate weder entlang der Raum- noch entlang der Zeitko-
ordinate konstant ist, werden die Formeln 15 und 16 addiert.

Um die Formel anzuwenden, berechnet man zuerst den Wert q̂ bzw. t̂. Das Dach
über dem Zeichen bedeutet: "Die Auswirkung auf die q bzw. t-Koordinate, wenn
man das System um einen beliebig kleinen Faktor ε entlang der zyklischen Koordi-
nate verschiebt."

Wenn beispielsweise die φ-Zylinderkoordinate zyklisch ist und man die Änderung in
kartesischen Koordinaten angeben möchte, dreht man den Vektor mit der Drehma-
trix um den Winkel ε

(
x
y

)(
cosε sinε
-sinε cosε

)
=

(
xcosε− ysinε
xsinε+ ycosε

)
(17)

und erhält damit nach der Drehung die Koordinaten

x̂ = xcosε− ysinε (18)

ŷ = xsinε+ ycosε (19)

Als nächstes leitet man die Funktion nach ε ab und setzt anschlieÿend ε = 0.
Dadurch erhält man die in�nitesimale Änderung der Lagrangefunktion entlang der
zyklischen Koordinate an der Stelle ε = 0. Diese Werte setzt man für alle Koordi-
naten in die Formel 15 bzw. 16 ein.

Übungsaufgabe 3

Berechne die Impuls-, Drehimpuls- und Energieerhaltung mit dem allgemeinen
Vorgang in den kartesischen Koordinaten!

Link zur Lösung
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Lösungen der Übungsaufgaben

Übungsaufgabe 1

Kontinuierliche Symmetrie entlang der φ-Koordinate
Spiegelsymmetrie um alle Achsen in der Mitte des Kegels

Übungsaufgabe 2

Verwendung von Zylinderkoordinaten

m

2
(ṙ2 + r2φ̇2 + ż2) + U(r) (20)

Bilden der Ableitung nach φ̇ und ż

δL

δφ̇
= mr2φ (21)

δL

δż
= mz (22)

Einsetzen in Lagrangegleichungen

d

dt
(mr2φ) = 0 (23)

d

dt
(mz) = 0 (24)

Drehimpulserhaltung entlang der φ-Koordinate
Impulserhaltung entlang der z-Koordinate

Übungsaufgabe 3

Da man immer die kartesischen Koordinaten verwenden soll, ist die Ableitung der
Lagrangefunktion nach der Geschwindigkeit in allen Fällen mq̇

Die Impulserhaltung folgt aus der Verschiebung entlang einer kartesischen Koor-
dinate, das heiÿt bei der Verschiebung wird zu dieser Koordinate ε dazugezählt

q̂ = q + ε (25)

Die Ableitung von q̂ nach ε ist 1. Bei allen anderen Koordinaten verschiebt sich
überhaupt nichts, sodass kein ε vorkommt und die Ableitung nach ε folglich 0 ist.
Übrig bleibt folglich nur mehr mq̇ und das ist der Impuls entlang der q-Koordinate

Die Drehimpulserhaltung folgt aus der Verschiebung entlang des Winkels. In kar-
tesischen Koordinaten ist das die Multiplikation mit der Drehmatrix
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(
x
y

)(
cosε sinε
-sinε cosε

)
=

(
xcosε− ysinε
xsinε+ ycosε

)
(26)

Vergleich der Einträge liefert:

x̂ = xcosε− ysinε (27)

ŷ = xsinε+ ycosε (28)

Für die z-Koordinate gilt ẑ = z , weil sich die durch das Drehen entlang des Winkels
nicht ändert. Ableiten nach ε ergibt:

dx̂

dε
= −xsinε− ycosε (29)

dŷ

dε
= xcosε− ysinε (30)

dẑ

dε
= 0 (31)

Einsetzen von ε = 0 führt zu den Werten -y und x. Multipliziert mit der Ableitung der
Lagrangefunktion nach der Geschwindigkeit und aufsummiert erhält man −mẋy +
mẏx . Umformen führt zur Gleichung m(xẏ −y ẋ) und das ist die z-Komponente des
Drehimpulses:

r ×mv =

x
y
z

×m

ẋ
ẏ
ż

 =

m(y ż − zẏ)
m(zẋ − xż)
m(xẏ − y ẋ)

 (32)

Man erhält die z-Komponente deshalb, weil man die Drehung in der xy-Ebene, also
um die z-Achse, ausgeführt hat. Wenn man die Drehung in einer anderen Ebene
ausführt, erhält man ganz analog die anderen Komponenten des Drehimpulses, das
sind die Drehungen um die anderen Achsen.

Die Energieerhaltung folgt aus der Verschiebung entlang der t-Koordinate, das
heiÿt bei der Verschiebung wird zu dieser Koordinate ε dazugezählt.

t̂ = t + ε (33)

Die Ableitung nach ε ist eins, so dass in allen Koordinaten mq̇ überbleibt.

mq̇

2
− Epot −mq̇ = −mq̇

2
− Epot = −(Ekin + Epot) = −E (34)

Wenn -E konstant ist, ist auch E konstant.
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